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Abstract

Non-stationary income processes are standard in quantitative life-cycle models,
prompted by the observation that within-cohort income inequality increases with
age. This paper generalizes Tauchen (1986), Adda and Cooper (2003), and Rouwen-
horst’s (1995) discretization methods to non-stationary AR(1) processes. We eval-
uate the performance of these methods in the context of a canonical life-cycle,
income-fluctuation problem with a non-stationary income process. We also ex-
amine the case in which innovations to the persistent component of earnings are
modeled as draws from a mixture of Normal distributions. We find that the gen-
eralized Rouwenhorst’s method performs consistently better than the others even
with a relatively small number of states.
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1 Introduction

Life-cycle models featuring idiosyncratic risk are used extensively to quantitatively exam-

ine a wide range of issues, such as the determinants of consumption (Storesletten et al.,

2004b) and wealth (Huggett, 1996; De Nardi, 2004; Cagetti and De Nardi, 2006), opti-

mal tax progressivity (Conesa and Krueger, 2006; Krueger and Ludwig, 2013; Heathcote

et al., 2017) and educational choices (Abbott et al., 2018), just to name a few.

Idiosyncratic labor income risk is most often a crucial ingredient in this class of models.

The stylized fact, first documented by Deaton and Paxson (1994), that both income and

consumption inequality increase with age implies that the non-stationarity of income

must, a fortiori, be driven by a non-stationary persistent component. For this reason,

most quantitative life-cycle analyses assume a persistent labor income component whose

(unconditional) variance increases with age. Typically this is obtained by positing that

the persistent component has a stationary conditional distribution (i.e. the persistence

parameter and the distribution of innovations are age-independent) but either (a) the

process has a unit-root (Storesletten et al., 2004b); or, if the persistence parameter is

less than unit, (b) the variance of its initial conditions is small relative to the variance

of subsequent shocks1 (Huggett, 1996; Storesletten et al., 2004a; Kaplan, 2012). More

recently, a number of papers (Karahan and Ozkan, 2013; Blundell et al., 2015; Guvenen

et al., 2016; De Nardi et al., 2018) have documented that even the conditional distribution

of the persistent component of labor income is non-stationary; namely, both its persistence

and the variance of innovations change with age. As shown by Karahan and Ozkan (2013)

and De Nardi et al. (2018) these latter features are important to account for the pass-

through of persistent income shocks onto consumption and for the evolution of cross-

sectional consumption dispersion in the data, as well as for the welfare costs of labor

income risk.

To sum up, non-stationarity of the (persistent component of the) labor income process

is an important feature of any life-cycle model that aims to account for the distribution

of consumption and wealth and other forms of heterogeneity in individual outcomes.

Introducing such a process into a quantitative model usually involves approximat-

1More formally, the variance of the initial conditions η0 is smaller than that of the (stationary)
asymptotic distribution of ηt as t diverges to infinity.
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ing the continuous stochastic process through a Markov chain with a finite state space.

As one would expect, the accuracy of such an approximation affects quantitative pre-

dictions. Different methods are available to perform such approximation for stationary

AR(1) processes. Among these, Tauchen (1986) and its variant Tauchen and Hussey

(1991), Rouwenhorst (1995), and Adda and Cooper (2003) are the most commonly used

in economics. Yet, there is currently no standard, off-the-shelf method for discretizing a

non-stationary AR(1) process. The quantitative implementations in the extensive litera-

ture on life-cycle, heterogeneous-agent models use a variety of approaches and we review

some well-known examples in Section 2.4. In most cases these methods are only partially

documented, hence we know little about their performance.

Our work is meant to provide a more systematic analysis of this approximation prob-

lem. We show how to extend standard discretization methods for stationary AR(1)

processes—namely Tauchen (1986), Rouwenhorst (1995), and Adda and Cooper (2003)—

to non-stationary AR(1) processes, and we evaluate their performance. As in the original

methods, our extensions keep the number of states in each time period constant. The

main difference is that both the state vector and the transition matrix are allowed to

change over time in accordance with changes in the moments of the original process. In

all cases, the defining properties of the original stationary method are preserved.

The properties of alternative discretization methods to approximate stationary AR(1)

processes in the context of stationary infinite horizon problems have been studied in some

detail by Kopecky and Suen (2010). They find that: (a) the choice of discretization

method may have a significant impact on the model simulated moments; (b) the perfor-

mance of Rouwenhorst’s (1995) method is more robust, particularly for highly persistent

processes. Like in the analysis of Kopecky and Suen (2010) for the stationary case, we

compare the respective performance of the three methods both in approximating the

original continuous process and in generating accurate model solutions. The latter is the

relevant metric to assess the impact of alternative discretization methods on the variables

of interest to the researcher. Our baseline analysis is carried out within a standard life-

cycle, income-fluctuation model with a canonical labor income process featuring both an

AR(1) persistent component and a transitory white noise component (Abowd and Card,

1989).
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In our numerical implementations we consider three sets of assumptions for the AR(1)

component. In the first, more standard, case the conditional distribution is stationary,

while the unconditional is not; i.e., both the persistence coefficient and the variance of

the shocks are age-independent. In the second case, both the persistence coefficient and

the shocks’ variance are functions of age, as in Karahan and Ozkan (2013). In both

these specifications the innovations to the AR(1) component are assumed to be normally

distributed. Finally, in a third case, we maintain the assumption that the persistence

coefficient and the shocks’ variance are age-independent, but we assume that shocks have

a non-normal distribution following Guvenen et al. (2016). In both the first and third case,

we report results under different degrees of persistence of the AR(1) process, including

the unit root case, as it is well known that the performance of standard discretization

methods worsens as the degree of persistence increases.

We find that Rouwenhorst’s method tends to perform better even with a relatively

small number of grid-points.

The remainder of the paper is structured as follows. Sections 2.1-2.3 discuss how to

extend Tauchen (1986), Adda and Cooper (2003) and Rouwenhorst’s (1995) methods to

non-stationary AR(1) processes. Section 2.4 reviews some well-known implementations

of the life-cycle model with idiosyncratic labor income risk, with a focus on their respec-

tive approaches to discretizing non-stationary AR(1) processes. Section 3 presents the

quantitative framework we use to assess the accuracy of the various methods. Section 4

compares the accuracy of our three discretization methods. Section 5 concludes.

2 Discrete approximations of AR(1) processes

Consider an AR(1) process of the following form,

ηt = ρtηt−1 + εt, εt
id∼ N(0, σεt), (1)

where the standard deviation of the innovation σεt and the autoregressive coefficient ρt

are both allowed to depend on time t. Furthermore, ρt is not restricted to lie inside the

unit circle. The initial realization η0 may be deterministic or a random draw from some
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distribution.2 Let σt denote the unconditional standard deviation of ηt. It follows from

equation (1) that

σ2
t = ρ2

tσ
2
t−1 + σ2

εt (2)

is also potentially time-dependent and therefore is not, in general, covariance-stationary.

Sufficient conditions for stationarity are that the process in equation (1) is restricted

to

ηt = ρηt−1 + εt, |ρ| < 1, εt
iid∼ N(0, σε) (3)

with constant persistence ρ, standard deviation σε, and η0 randomly drawn from the

asymptotic distribution of ηt; namely, N(0, σ) where σ = σε/
√

1− ρ2. We call this case

the stationary case in what follows, to distinguish it from the general, unrestricted process

in equation (1). A number of methods have been proposed to discretize stationary AR(1)

processes of this kind by means of an N -state Markov chain with time-independent state

space ΥN and transition matrix ΠN .

In what follows we extend three of these methods—Tauchen (1986), Adda and Cooper

(2003) and Rouwenhorst’s (1995)—to a non-stationary AR(1) of the general form in

equation (1).3 Basically, in each case we approximate the non-stationary AR(1) process

by means of a Markov-chain with a time-independent number of states N, but time-

dependent state space ΥN
t and transition matrix ΠN

t .

2.1 Tauchen’s (1986) method

2.1.1 Stationary case

Tauchen (1986) proposes the following method to discretize a stationary AR(1) process

by means of an N -state Markov chain. The state space ΥN = {η̄1, . . . , η̄N} is uniformly-

2Without loss of generality, we assume its expectations to be zero.
3Unlike Kopecky and Suen (2010), we do not examine the quadrature-based methods of Tauchen and

Hussey (1991) and Flodén (2008). As pointed out in Flodén (2008), Tauchen and Hussey (1991) performs
poorly when approximating highly persistent processes, as it uses the quadrature nodes implied by the
conditional distribution (the distribution of the shock εt in eq. 1). This approach places grid points too
close to the mean of the process compared to the unconditional distribution. Flodén (2008) improves
on that by selecting the nodes implied by a distribution with a variance that is a weighted average of
the conditional σε and the variance of the asymptotic distribution. His choice of weights, however, is
appropriate for a stationary AR(1) process and, as Kopecky and Suen (2010) show, the performance
of Flodén (2008) is never significantly better, and usually worse, than Rouwenhorst (1995). For these
reasons, we restrict our attention to methods that require no extra parameter choices and can be more
immediately adapted to non-stationary settings.
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spaced with

η̄N = −η̄1 = Ωσ

where Ω is a positive constant.4 The transition matrix ΠN is determined as follows. Let

Φ denote the cumulative distribution function for the standard normal distribution and

h = 2Ωσ/(N−1) the step size between grid points. For any i, j = 1, . . . , N, the transition

probabilities satisfy

πij =


Φ
(
η̄j−ρη̄i+h/2

σε

)
if j = 1,

1− Φ
(
η̄j−ρη̄i−h/2

σε

)
if j = N,

Φ
(
η̄j−ρη̄i+h/2

σε

)
− Φ

(
η̄j−ρη̄i−h/2

σε

)
otherwise.

(4)

Basically, the method constructs the transition probabilities πij to equal the probabil-

ity (truncated at the extremes) that ηt falls in the interval (η̄j−h/2, η̄j+h/2) conditionally

on ηt−1 = η̄i.

2.1.2 Non-stationary case

Our non-stationary extension of Tauchen (1986) constructs a state space ΥN
t = {η̄1

t , . . . , η̄
N
t }

with constant size N , but time-varying grid-points with

η̄Nt = −η̄1
t = Ωσt (5)

and step size ht = 2Ωσt/(N − 1). The associated transition probabilities are

πijt =


Φ
(
η̄jt−ρη̄it−1+ht/2

σεt

)
if j = 1,

1− Φ
(
η̄jt−ρη̄it−1−ht/2

σεt

)
if j = N,

Φ
(
η̄jt−ρη̄it−1+ht/2

σεt

)
− Φ

(
η̄jt−ρη̄it−1−ht/2

σεt

)
otherwise.

(6)

The main difference between our extension and its stationary counterpart is that the

range of the equidistant state space in equation (5) is time varying and, as a result, so

are the transition probabilities.

4Tauchen (1986) sets Ω = 3. Kopecky and Suen (2010) calibrate it so that the standard deviation of
the Markov chain coincides with that of the original AR(1) process.

6



2.2 Adda and Cooper’s (2003) method

2.2.1 Stationary case

The Adda-Cooper discretization method is similar to Tauchen’s, except that the support

of the unconditional distribution of η is partitioned into N intervals {[xi, xi+1]}Ni=1 each

having equal probability mass. Under the maintained assumptions that ηt has zero mean

and the innovation εt is normally distributed, we can define the intervals by solving the

following system of equations,

Φ

(
xi

σ

)
=
i− 1

N
i = 1, ..., N + 1,

where Φ(·) is the standard Normal cumulative probability function.5

Element ηi, i = 1, . . . , N of the state space equals the expected value of the variable η

conditional on it assuming values within the interval [xi, xi+1]. The transition probability

πi,j is defined as the conditional probability of η moving from interval [xi, xi+1] to interval

[xj, xj+1] from one period to the next and have to be computed numerically.

2.2.2 Non-stationary case

To implement the Adda and Cooper method in a non-stationary setting we first construct

N intervals, {[xit, xi+1
t ]}Ni=1, for each period t. The cut-off points are the solutions to

Φ

(
xit
σt

)
=
i− 1

N
i = 1, ..., N + 1, (7)

where the unconditional mean is still zero and the variance σt of ηt now depend on t.

The transition probability πi,jt is then defined as the probability of η moving from the

interval [xit, x
i+1
t ] to the interval [xjt+1, x

j+1
t+1 ] between t and t+ 1.

2.3 Rouwenhorst’s (1995) method

The Rouwenhorst method of is best understood as determining the parameters of a two-

state Markov chain, with equidistant state space, in such a way that the conditional first

5The formula implies x1 = −∞ and xN+1 = +∞. For more details, see pages 57-58 of Adda and
Cooper (2003).
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and second moments of the Markov chain coincide with the same moments of the original

AR(1) process.6

2.3.1 Stationary case

In the case of the stationary AR(1) process in equation (3), the state space for the two-

state Markov chain is η̄2 = −η̄1 and the transition matrix is written as

Π2 =

 π11 1− π11

1− π22 π22

 . (8)

The moment condition for the expectation conditional on ηt−1 = η̄2 is

E(ηt|ηt−1 = η̄2) = −(1− π22)η̄2 + π22η̄2 = ρη̄2, (9)

where the left hand side is the conditional expectation of the Markov chain and the right

hand side its counterpart for the AR(1) process with ηt−1 evaluated at the grid point η̄2.

It follows that

π22 =
1 + ρ

2
= π11, (10)

where the second equality follows from imposing the same condition for ηt−1 = η̄1 = −η̄2.

If ηt−1 = η̄2, the moment condition for the variance is7

Var(ηt|ηt−1 = η̄2) = (1− π22)
(
−η̄2 − ρη̄2

)2
+ π22

(
η̄2 − ρη̄2

)2
= σ2

ε , (11)

which, after replacing for π22 from equation (10), implies

η̄2 = σ. (12)

Having determined Π2 and Υ2, the method scales to an arbitrary number of grid

points N in the following way.8 The state space ΥN = {η̄1, . . . , η̄N} is uniformly-spaced

6A Markov chain of order N is characterized by N2 parameters (N states plus (N2 − N) linearly-
independent transition probabilities) and can be uniquely identified by N2 linearly-independent moment
conditions. Rouwenhorst’s method is, therefore, a special case of a general moment-matching procedure.

7By symmetry the other conditional-variance equation is satisfied whenever equation (11) holds with
equality.

8We refer the reader to Rouwenhorst (1995) and Kopecky and Suen (2010) for a rigorous derivation.
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with

η̄N = −η̄1 = σ
√
N − 1. (13)

For N ≥ 3, the transition matrix satisfies the recursion

ΠN = π

 ΠN−1 0

0′ 0

+ (1− π)

 0 ΠN−1

0 0′

+ π

 0 0′

0 ΠN−1

+ (1− π)

 0′ 0

ΠN−1 0

 ,
(14)

where π = π11 = π22 and 0 is an (N − 1) column vector of zeros. The main difference

between Rouwenhorst and the other two methods is that in the former the transition

probabilities do not embody the normality assumption about the distribution of the

shocks. Rather, Rouwenhorst matches exactly, by construction, the first and second

conditional moments and, by the law of iterated expectations, also the unconditional

moments of the continuous process, independently of the shock distribution.

2.3.2 Non-stationary case

Just like in the Tauchen’s case, our non-stationary implementation of Rouwenhorst (1995)

constructs an equally-spaced, symmetric, state space ΥN
t = {η̄1

t , . . . , η̄
N
t }. The grid cardi-

nality N is constant but the grid points and transition matrix ΠN
t change with the index

t. If N = 2, it follows that η̄2
t = −η̄1

t and the counterpart of the first-moment condition

(9) becomes

E(ηt|ηt−1 = η̄2
t−1) = −(1− π22

t )η̄2
t + π22

t η̄
2
t = ρtη̄

2
t−1,

with unique solution

π22
t =

1

2

(
1 + ρt

η̄2
t−1

η̄2
t

)
=

1

2

(
1 + ρt

σt−1

σt

)
= π11

t , (15)

where the second equality follows from the counterpart of the second moment condition

(11) which implies

η̄2
t = −η̄1

t = σt. (16)

The third equality in equation (15) follows from the expression for the conditional

first moment for ηt−1 = η̄t−1.

As in the non-stationary version of Tauchen, the points of the state space are a
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function of the time-dependent unconditional variance of ηt. Comparing equations (10)

and (15) reveals that, relative to the stationary case, the probability π22
t of transiting

from η̄2
t−1 to η̄2

t depends on the rate of growth of the unconditional variance of ηt.

Equation (15) implies that the condition for the Markov chain to be well defined, and

have no absorbing states, namely 0 < π11
t = π22

t < 1, is equivalent to

ρ2
t

σ2
t−1

σ2
t

< 1. (17)

It follows from equation 2(2) that this condition always holds. Therefore Rouwen-

horst’s approximation can be applied to any process of the type defined in equation (1).9

As in the stationary case, the approach scales to an N -dimensional, evenly-spaced

state space ΥN
t by setting

η̄Nt = −η̄1
t = σt

√
N − 1 (18)

and ΠN
t to satisfy the recursion (14) with the transition matrices and the probability

πt = π11
t = π22

t indexed by t.

2.4 Alternative discretization approaches

This section reviews some well-known numerical implementations of the life-cycle model,

with a focus on their approach to the discretization of non-stationary AR(1) income

processes. Rather than providing an exhaustive survey of the wide-ranging literature in

this area, we aim to present few illustrative examples and use them to highlight key issues

in the approximation of income processes within finite life-cycle models.

Huggett (1996) examines the ability of a life cycle model to reproduce the age-wealth

distribution in US data. He assumes an AR(1) labor income process as in equation (3)

and normally distributed initial conditions η0 with standard deviation ση0 lower than the

asymptotic standard deviation σ = σε/
√

1− ρ2. Therefore, the cross-sectional variance of

income increases with age. To discretize the income process Huggett (1996) uses a variant

of the (stationary) method of Tauchen (1986). Specifically, he posits an age-invariant,

uniformly-spaced grid of 18 states with η̄N = −η̂1 = 4ση0 ≈ 3ση—where the last relation

follows from the fact that ση0/σ ≈ .7 in his calibration—plus an extra grid point equal

9This is also trivially true for Tauchen’s method.
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to 6ση0 . Basically, this approach constructs the age-invariant state space using Tauchen’s

approximation of the asymptotic distribution of labor income.10 Huggett (1996) reconciles

the non-stationarity of the earnings process with the stationarity of the state space by

imposing that draws of the initial condition η0 are restricted to points of age-invariant

state space.11 This way, at the simulation stage, the Markov chain has a non-stationary

distribution despite a time-invariant state space and transition probabilities. The price

to pay for holding the state space constant is that one uses the same range for grid points

at all ages, which implies that grid points are placed too far out, relative to Tauchen,

for ages at which the unconditional distribution is less disperse than the asymptotic

one. De Nardi (2004) studies a similar model, with the addition of inter-generational

bequests and transmission of earnings ability, to explain wealth concentration at the

top. Along the lines of Huggett (1996), she uses a time-invariant Markov chain with a

distribution of η0 that differs from the asymptotic one. The main difference is that the 4

grid points and the associated transition probabilities are chosen following Tauchen and

Hussey (1991).12 These two variations of Huggett’s approach to introduce non-stationary

AR(1) processes into life-cycle models have been extensively used in the literature (e.g.

Conesa and Krueger, 2006).

Storesletten et al. (2004b) explore the extent to which individual-specific earnings risk

can account for the fanning-out of cross-sectional income and consumption inequality over

the life-cycle observed in data. Their assumed income process features a permanent (ran-

dom walk) and a transitory component, both with stationary conditional distributions.

They approximate the random walk through a binomial tree with innovations taking two

possible values {±0.127}, each with probability 0.5.13 Given an initial condition η0 = 0,

the support for the shocks fans out over the life-cycle and traces the income dynamics

10The sentence in the paper, “The transition probabilities between states are calculated by integrating
the area under the normal distribution conditional on the current value of the state.” suggests that also
the transition probabilities follow Tauchen.

11In other words, η0 is distributed over the grid-points η̄i with probabilities given by equation (4) with
ρ = 0 and normalizing by ση0 instead of σε.

12This is likely even more problematic because Tauchen and Hussey (1991) chooses grid points on the
basis of the conditional distribution of the process (that is, the distribution of the innovations) implying
that the fit worsens as the unconditional distribution fans out with age.

13The two values are those implied by the Gaussian-Hermite nodes. To be precise, they write that
the transition probabilities are “...chosen following Tauchen and Hussey (1991).” This implies that the
transition probabilities are 0.5 given symmetry and the requirement that they add up to one.
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over an equally-spaced state space whose dimension depends on the length of the working

life. Their approximation features a Markov chain with 6214 states and age-dependent

transition probabilities implied by the binomial process.

Kaplan (2012) structurally estimates a life-cycle model with endogenous labor supply

to account for the joint distribution of wages, hours and consumption. He estimates a

wage process featuring both a persistent AR(1) component (with less-than-unit persis-

tence) and a transitory component. The initial condition for the persistent component is

η0 = 0 and he approximates the persistent component through an 11-state Markov chain

defined over an “...age-varying state. Values and transition probabilities are chosen to

match the age-varying unconditional variance and dependence structure...to that implied

by the continuous process.” Unlike the papers mentioned above, Kaplan’s approach is

effectively a moment-matching method similar in spirit to that of Rouwenhorst’s. In

fact his description is reminiscent of, and consistent with, our non-stationary adapta-

tion of Rouwenhorst’s method, as described in Section 2.3.2. While the description of

this method does not contain enough details to reproduce it, we expect this approach to

enjoy some of the advantages of the Rouwenhorst’s moment-matching method that we

document below.

All the above papers assume that the conditional distribution of the persistent income

component (namely, the persistence parameter and the shocks’ variance) is time-variant.

Karahan and Ozkan (2013) were the first to examine the implications of age-varying

persistence and shocks’ variances for the age-profile of consumption and the pass-through

of persistent income shocks onto consumption. In their analysis they use 61 grid points for

the normally-distributed, persistent labor income component. While there is no detailed

information about the implementation steps, we conjecture that the solution method is

based on the same highly accurate quadrature-based approach used in Guvenen et al.

(2016), which we describe below.

Guvenen et al. (2016) document how the distribution of labor earnings growth rates

displays significant deviations from normality and age-dependence of conditional mo-

ments. They estimate a sophisticated parametric labor earnings process by simulated

14Strictly speaking, given a working life of T = 43 years in their calibration, the process should actually
trace 87 (i.e., 2T + 1), not 62, states. We are unsure whether they actually truncate the support of their
process. In our implementation of their method in Section 4.1.1 we do not truncate it.
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method of moments using W2 Social Security individual earnings data for the US. The

process features substantial individual heterogeneity as well as a persistent and a transi-

tory component. To capture the non-normality in the data, the persistent component is

modeled as a mixture of two AR(1) processes, with shocks that are, in turn, a mixture

of a normal distribution and a mass point. Mixtures probabilities are allowed to depend

on age. The estimated income process is then introduced into a life cycle model in order

to assess its implications for wealth inequality, self-insurance and welfare. Each of the

two AR(1) components is discretized by using a relatively dense, age-invariant grid (with,

respectively, 21 and 41 points). At each grid point, expectations with respect to the Gaus-

sian component of innovations are computed using Gaussian-Hermite quadrature with 7

nodes and bi-dimensional interpolation. This approach is highly accurate and, for this

reason, we use it to compute our benchmark solutions and to assess the performance of

the three alternative discretization methods in Section 4. The downside of this approach

is that it is computationally very costly and harder to implement because it relies heavily

on interpolation to compute expectations.

Finally, De Nardi et al. (2018) estimate a “persistent plus transitory” process for dis-

posable household earnings using US data from the PSID. They use the semi-parametric

method developed by Arellano et al. (2017) to estimate a polynomial approximation

to the distributions of both the persistent and the transitory component, allowing for

age-dependence, non-normality and non-linearity. A discretized version of the estimated

process is then introduced into a life-cycle model to assess its implications for the age pro-

file of cross-sectional consumption dispersion, self-insurance and welfare. In the numerical

implementation the different earnings components are discretized as follows. First, for

each component, they simulate a large panel of individual histories using the estimated

distribution. Second, they discretize the simulated marginal distribution of earnings at

each age into a (age-independent) set of bins and replace the (heterogeneous) values of

earnings in each bin with their median. The associated, age-specific transition matrices

are then obtained by computing the proportion of observations transiting from bins of

the earnings distribution at age t to bins at age t+ 1. The result is a non-parametric rep-

resentation of the process that follows a Markov chain with an age-dependent transition

matrix and a fixed number of age-dependent earnings states. This method is conceptually
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very similar to our non-stationary extension of Adda and Cooper (2003) in Section 2.2.2

with a few differences. In both cases the marginal distributions are discretized into a fi-

nite number of bins and transition probabilities are computed by numerically integrating

the conditional distributions. Their simulation-based, counting procedure is effectively

Monte Carlo integration. The main difference is that contrary to our method in Section

2.2.2 (a) their bins have different mass, with a finer partition in the tails of the distribu-

tion;15 (b) they assign to each interval the median value among observations within that

interval, rather than the mean.16

In Section 4 we examine the approximation quality of the well-known discretization

methods by Tauchen, Adda-Cooper and Rouwenhorst, appropriately adapted to non-

stationary income processes. For comparison we also report approximation results for

two of the ad-hoc methods described above (Huggett, 1996 and Storesletten et al., 2004)

whose implementation procedures are fairly straightforward and easily reproducible. Of

course, as we mentioned, we implement the more complex and computationally intensive

approach of Guvenen et al. (2016) to recover a highly accurate benchmark solution for

all the income models we study below.

3 Evaluation

In order to assess the performance of the different discretization methods described above,

we solve a finite-horizon, income-fluctuation problem with a persistent, non-stationary

labor income process. Countless variations of this model have been studied motivated by

Deaton and Paxson’s (1994) finding that within-cohort income inequality increases with

the age of a cohort.

15They use 18 bins for the persistent labor income component with the top and bottom five bins having
each 2% mass and the remaining 8 bins containing 10% of observations.

16They choose non-homogeneous bin sizes, heuristically, to obtain a good fit of the age-dependent
moments of the original distribution.

14



The problem has the following recursive representation17

Vt(zt, ηt) = max
ct,at

log(ct) + βEtVt+1(zt+1, ηt+1) (19)

s.t. zt = (1 + r)at−1 + yt

at + ct = zt

log yt = ηt + ut

ηt = ρtηt−1 + εt,

εt ∼ F (0, σεt), ut
i.i.d.∼ N(0, σu)

at+1 ≥ 0, a0, y0 given.

Individuals start life in period 1 and live until period T = 40. In each period t, they

allocate their total cash at hand zt between consumption ct and the stock at+1 of an asset

paying a risk-free interest rate r. In each period, agents receive a stochastic flow of labor

income yt whose logarithm is the sum of an Gaussian i.i.d. transitory component εt and

a persistent AR(1) components ηt. The allow for the possibility that the autoregressive

coefficient of ηt and the standard deviation of its innovation εt depend on time, as well

as for the distribution of εt to be non-Gaussian.

Since, as is well known, accurately approximating a transitory stochastic process poses

no serious difficulty, we apply our discretization methods to the persistent component ηt.

Similarly, we do not consider fixed effects in the labor income process because, by defini-

tion, they are drawn only once and, therefore, the only relevant issue in their modeling

is the choice of the number and location of grid points.18

We evaluate the accuracy of the different discretization methods in the following

way. We solve the optimization problem by using the endogenous grid point method

of Carroll (2006) and Gaussian-Hermite quadrature and linear interpolation over z to

compute the expectation with respect to the transitory component u. As for computing

the expectation with respect to the persistent component, we use either of our three

discretization methods and compare it to an alternative, highly accurate, benchmark

17The zero lower bound for next period’s assets is without loss of generality. It is always possible to
rewrite the problem so that the lower bound on, the appropriately translated, asset space is zero.

18In our model with no retirement stage, fixed effects would simply induce a parallel shift in consump-
tion at each age.
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solution using a time-invariant grid for η with a large number of points and Gaussian

quadrature to compute the expectation.19 In the latter case, we interpolate bi-linearly

over z and η. We describe our benchmark solution in detail in Appendix A.1.

In all cases we solve for the policy functions using a common, 1,000-point grid, for z

and 5 quadrature nodes for the transitory shock u.20 As for η, we use a method-dependent

N -state (N = 5, 10, 25) Markov chain under our three discretization methods against

10,000 grid points and 5 quadrature nodes for the benchmark solution.

After solving for the policy functions, we generate 2,000,000 individual income histo-

ries. We do this in two different ways. In the first case, we generate the income histories

using the discrete Markov-chain approximation. The simulation involves linearly interpo-

lating the policy functions only with respect to z. In the second case, as in the benchmark

solution, we generate income histories using the continuous AR(1) process for η. We then

interpolate bi-linearly over both z and labor income η. The key difference between these

two approaches has to do with the sources of the errors that they introduce. Both cases

suffer from approximation errors in the policy function, relative to the benchmark, due

to the fact that the policy functions solve the Euler equations exactly only at a relatively

small number of grid points for labor income. The continuous AR(1) simulation does

not suffer from the approximation error of discretization that exists in the Markov-chain

simulation, but introduces an additional source of error due to the bi-linear interpolation

with respect to η and z.

In both cases, we assess the accuracy of the three discretization methods by comparing

simulated moments under each method to moments generated by the benchmark solution.

We set the common parameters to the following standard values. The discount rate

is β = 0.96, the interest rate r = 0.04, initial wealth a0 = 0 and η0 = 0.

3.1 Accuracy of the benchmark solution

As stated above, our chosen benchmark involves solving the problem by the endogenous

grid point method on a finite set of grid points for (z, η), Gaussian-Hermite quadrature to

compute expectations and bi-linearly interpolation in between grid points. Although the

19The same integration method is used in Guvenen et al. (2016) (see their Appendix D.1.2).
20Given n quadrature nodes, Gaussian quadrature approximates exactly the integral of any polynomial

function of degree up to 2n− 1.
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accuracy properties of the endogenous gridpoint methods with linear interpolation in one

dimension are well known (see Barillas and Fernández-Villaverde, 2007), one may want

to be reassured that the method, combined with Gaussian quadrature, remains accurate

when interpolating bi-linearly over z and η.21

In order to assess the accuracy of our method we study the special case in which

the persistent component η is a random walk and the variances of the innovations are

constant. The advantage of the assumption is that, as first shown in Carroll (2004),

the combination in such a case problem (19) can be normalized by the permanent labor

income ηt component, thereby reducing the effective state space to the single variable

ẑt = zt/ηt.
22. It follows that, under the assumption that income innovations are log-

normally distributed, one can solve the model in (19) using an alternative procedure. This

entails implementing the endogenous gridpoint method interpolating just with respect to

ẑt and using Gaussian-Hermite quadrature to integrate with respect to ut and εt. Given

the well-known properties of quadrature, the model solution based on the endogenous

gridpoint method and quadrature can be considered highly accurate.

Furthermore since, by construction, the non-normalized policy function at(zt, yt) =

ât(ẑt)yt is linear in labor income, our benchmark simulation does not require any approx-

imation with respect to labor income. Therefore, the simulated moments generated by

this benchmark solution constitute a highly accurate approximation to the true model

moments.

As we show in Appendix A.2 this alternative solution of the benchmark unit root

model delivers simulated moments that are effectively identical to the ones obtained

when we use our baseline solution method. This is reassuring and indicates that our

standard benchmark solution is extremely accurate and provides a reliable benchmark

when assessing the different discretization methods.

21Kopecky and Suen (2010) use a non-finite state space benchmark solution—the Parameterized Ex-
pectations Algorithm (PAE) of den Haan and Marcet (1990)—which does not require interpolation when
assessing the accuracy of alternative methods to discretize stationary AR(1) processes used in stationary,
infinite-horizon models. The computational costs of PAE are very large in life-cycle models with realistic
lifetimes, given the non-stationarity of the policy functions. This likely explains why we are not aware
of any paper using PAE to solve a life-cycle model.

22Appendix A.1 reports the derivation.
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4 Results

This section compares the performance of the three discretization methods considered

under alternative assumptions about the stochastic process of the persistent earnings

component. Section 4.1 considers the most common case (e.g. Storesletten et al., 2004b)

in which both the autoregressive coefficient ρt and the variances of the income innovations

are constant over time. In this setting the non-stationarity of the permanent component

is due to the initial draw η0 of the persistent component not being drawn from the limiting

(stationary) distribution of η and/or to the fact that the autoregressive process has a unit

root. Section 4.2 considers the case in which both ρt and the variance of the innovations

σ2
εt are non-stationary, as in Karahan and Ozkan (2013). Finally, in Section 4.3 we allow

for non-normality of the innovations.

We evaluate the accuracy of the alternative discretization methods by comparing

simulated moments obtained under the benchmark approach to those obtained under

either of the three discretization methods. We report percent deviations from benchmark

values for the unconditional mean and the standard deviation of income, consumption and

assets. Given the growing interest in wealth concentration, we also compute deviations

from the benchmark share of aggregate wealth held by households in the top 5% of the

wealth distribution.

4.1 Canonical persistent-transitory process

We set the variance of the AR(1) innovations σ2
ε = .0161 and the variance of the transitory

component σ2
u = .063, as in Storesletten et al. (2004b).23 We consider three possible values

for the autoregressive coefficient, namely ρ ∈ {0.95, 0.98, 1}.24

Tables 1 and 2 report the size of the approximation error for moments simulated

using, respectively, Tauchen, Adda and Cooper, and Rouwenhorst’s income discretization

methods. In the case of Tauchen we set Ω = 3 in equation (5).25 Approximation errors are

23The parameterization implies an aggregate wealth-income ratio slightly below 0.7 when ρ = 1, which
is in line with the baseline calibration in Carroll (2009) for a similar model with no retirement and
deterministic lifetime.

24Storesletten et al. (2004b) set ρ = 1 in their benchmark parameterization.
25This is the value in Tauchen (1986). Kopecky and Suen (2010) shows that Tauchen’s method is

sensitive to the choice of Ω. For this reason, in Appendix A.3 we calibrate a time-dependent value of
Ω to match the unconditional variance of the process at each age. Our key finding is that the relative
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Table 1: Percentage deviations from benchmark moments: Markov-chain simulation.

N = 5 N = 10 N = 25
Tau AC Rou Tau AC Rou Tau AC Rou
(%) (%) (%) (%) (%) (%) (%) (%) (%)

ρ = 0.95

Mean of y 3.73 -0.75 -0.08 1.48 -0.33 -0.06 0.08 -0.14 -0.05
SD of y 32.46 -9.96 -2.18 13.17 -4.99 -0.98 0.75 -2.06 -0.37
Mean of c 2.49 -0.02 -0.04 1.91 -0.01 -0.03 0.16 -0.08 -0.04
SD of c 29.79 -11.59 -1.89 12.84 -5.81 -0.80 0.71 -2.48 -0.30
Mean of a -30.16 19.24 0.98 13.28 8.48 0.72 2.09 1.46 0.21
SD of a -21.02 1.11 -3.40 11.28 0.41 -1.56 0.57 -0.14 -0.66
Top 5% wealth share 9.99 -18.09 -4.60 -0.85 -8.54 -2.22 -1.13 -1.40 -0.85

ρ = 0.98

Mean of y 5.72 -1.31 -0.17 3.15 -0.61 -0.11 0.30 -0.25 -0.07
SD of y 34.64 -13.66 -4.04 18.87 -7.49 -1.89 1.31 -3.43 -0.67
Mean of c 4.32 0.19 -0.14 3.61 0.15 -0.09 0.43 -0.03 -0.06
SD of c 27.85 -13.11 -3.80 18.84 -7.13 -1.75 1.42 -3.40 -0.61
Mean of a -38.11 45.31 0.79 17.37 22.91 0.38 4.12 6.62 0.19
SD of a -47.14 21.25 -3.79 11.36 11.09 -1.73 2.18 4.62 -0.77
Top 5% wealth share -22.56 -17.80 -4.38 -3.37 -7.55 -1.90 -1.16 0.51 -0.86

ρ = 1.00

Mean of y 8.82 -2.34 -0.38 5.48 -1.12 -0.18 0.76 -0.48 -0.15
SD of y 40.02 -20.43 -7.92 23.35 -12.42 -3.67 1.74 -6.48 -1.44
Mean of c 8.21 -0.06 -0.32 5.68 0.06 -0.15 0.98 -0.07 -0.13
SD of c 37.00 -16.12 -7.29 22.43 -9.57 -3.33 2.30 -5.10 -1.28
Mean of a -14.86 85.45 1.72 13.12 44.58 0.83 9.42 15.61 0.25
SD of a -26.26 69.61 -0.41 -2.92 39.39 -0.16 4.84 17.43 -0.11
Top 5% wealth share -19.61 -4.17 -1.11 -13.26 6.01 -0.43 -2.05 8.31 -0.19

Note: we report in bold the lowest deviation, for each moment and number of grid points.
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Table 2: Percentage deviations from benchmark moments: continuous process simulation.

N = 5 N = 10 N = 25
Tau AC Rou Tau AC Rou Tau AC Rou
(%) (%) (%) (%) (%) (%) (%) (%) (%)

ρ = 0.95

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c -1.95 1.03 -0.06 0.18 0.44 -0.03 0.06 0.10 -0.01
SD of c -4.97 6.13 0.00 0.39 2.79 -0.12 0.22 0.96 -0.05
Mean of a -53.22 28.24 -1.72 4.80 11.93 -0.83 1.54 2.67 -0.28
SD of a -38.71 31.37 0.45 2.24 16.47 -0.63 1.32 6.87 -0.30
Top 5% wealth share 16.59 4.83 2.30 -2.38 5.74 0.26 -0.11 4.47 0.03

ρ = 0.98

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c -1.81 1.85 -0.19 0.19 0.90 -0.12 0.10 0.27 -0.04
SD of c -4.40 10.71 0.32 -0.01 5.52 -0.23 0.44 2.25 -0.11
Mean of a -56.47 57.77 -5.96 5.89 28.08 -3.74 3.15 8.52 -1.30
SD of a -54.30 72.31 3.80 0.17 40.70 -1.23 3.65 18.68 -0.73
Top 5% wealth share -9.93 13.24 8.94 -5.74 12.61 2.11 0.15 9.08 0.53

ρ = 1.00

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c -1.00 2.71 -0.38 0.06 1.38 -0.25 0.21 0.49 -0.10
SD of c -0.95 17.99 2.03 -0.66 10.71 -0.18 1.01 5.19 -0.18
Mean of a -38.61 104.51 -14.57 2.15 53.21 -9.72 8.20 18.96 -3.82
SD of a -39.32 176.63 21.34 -8.26 108.81 -0.80 8.82 54.58 -1.16
Top 5% wealth share -9.26 43.60 29.11 -12.61 38.80 6.58 -0.16 23.67 1.96

Note: we report in bold the lowest deviation, for each moment and number of grid points.
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expressed in percentage deviations from the benchmark solution and each table reports

results for the three values of ρ we consider.

Table 1 reports results for the case in which the discretized income processes are used

both to compute the expectation in the decision problem and to simulate the model

(Markov-chain simulation). It is apparent that Rouwenhorst’s method provides the best

approximation by a wide margin, with Tauchen and Adda and Cooper’s methods deliv-

ering much less precise approximations even as the grid size increases. While all methods

tend to provide better approximations when the number of grid points increases, Rouwen-

horst’s is the only method that results in highly accurate moments even with just 5 grid

points for the income process. In fact, a five points approximation using Rouwenhorst’s

method is generally more accurate than the 25-point approximation using either of the

other methods.

Differences in performance become noticeably larger when income persistence grows:

in the unit root case, Tauchen and Adda-Cooper’s methods do a rather unremarkable job

of approximating the distributions of consumption and assets even when using a dense

grid, while Rouwenhorst’s approximation is consistently good regardless of grid size.

The largest discrepancies in the quality of the approximation occur for the distribution

of assets, where the only discretization method delivering consistently accurate moments

is Rouwenhorst, regardless of the number of grid points. This performance gap is espe-

cially visible when considering the standard deviation of assets. In the latter case, the

Rouwenhorst approximation using the Markov-chain simulation approach has an error of

at most 3.79 per cent for N = 5 and ρ = 0.98, while the lowest error is only 0.11 per

cent for N = 25 and ρ = 0.98. In contrast, the Tauchen approximation is off by a much

wider margin relative to the benchmark quadrature method, up to a 47% deviation for

the SD of assets. The Adda and Cooper approximation does better than Tauchen when

ρ is relatively low but performs poorly with higher persistence, even with a dense grid.

Striking differences are also evident in the approximation of the upper tail of assets (top

5% share) where Rouwenhorst’s method is roughly one order of magnitude more accurate

than either Tauchen or Adda and Cooper.

It is also apparent that, under the Tauchen discretization, the approximation error

performance of the three methods is not significantly affected.
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does not necessarily shrink as the number of grid points increases. Intuitively, when com-

paring the range of the income grid for Tauchen (equation 5) and Rouwenhorst (equation

13) methods, the range of the income grid increases faster with N for the latter method.

This implies that, in the case of Tauchen, a larger number of simulated observations get

piled onto the bounds relative to the benchmark method, reducing accuracy. This prob-

lem appears to be quite important when approximating the standard deviation of wealth

holdings.

Table 2 reports the approximation errors for the case in which the discretized income

processes are used only to compute the expectation in the decision problem but the

true (continuous) income processes are used in the model simulation (continuous process

simulation). By construction, there is no approximation error for the income process in

this case, which explains the zero deviations for the moments of y. On the other hand,

the simulation now involves sampling and interpolation errors, the latter stemming from

interpolating the policy functions with respect to η using the grid points as interpolating

nodes. The approximation of the other moments is generally better under this simulation

approach when ρ = 0.95. This is particularly true in the case of Rouwenhorst. For all

methods, it is substantially worse than the Markov-chain simulation for ρ greater or

equal 0.98. Clearly, for a given number of grid points, the effect of the interpolation

errors increases with ρ. As in the previous case, though, Rouwenhorst’s approximation

errors are roughly one order of magnitude smaller than either Tauchen or Adda and

Cooper.

In summary, these exercises indicate that Rouwenhorst’s method provides consider-

able advantages when approximating the life-cycle income processes considered in this

section. Specifically, we find that Rouwenhorst’s approximation: (i) consistently performs

better than the popular alternatives considered, across all moments and grid sizes; (ii)

delivers a significantly better approximation of the assets’ distribution, especially at the

top end of its range; (iii) is more robust to the choice of simulation method, exhibiting

smaller discrepancies between discrete and continuous simulations of the income process.
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Table 3: Percentage deviations from benchmark moments: comparison of Huggett method
and the three methods. ρ = 0.95.

N = 5 N = 10 N = 25
Hug Tau AC Rou Hug Tau AC Rou Hug Tau AC Rou
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Markov-chain simulation

Mean of y 3.21 3.69 -0.69 -0.08 3.29 1.45 -0.27 -0.06 1.43 0.08 -0.08 -0.05
SD of y 28.12 32.46 -9.48 -2.18 27.36 13.13 -4.49 -0.97 12.02 0.75 -1.54 -0.37
Mean of c 1.68 2.49 0.08 -0.04 4.53 1.88 0.09 -0.05 2.17 0.15 0.02 -0.03
SD of c 25.21 29.75 -11.16 -1.88 26.17 12.80 -5.35 -0.83 11.12 0.71 -2.01 -0.30
Mean of a -38.95 -29.41 20.38 0.97 37.58 13.14 9.52 0.13 21.59 2.05 2.46 0.29
SD of a -16.92 -20.88 2.29 -3.35 42.94 11.16 1.58 -1.46 26.32 0.60 1.02 -0.67
Top 5%
wealth share 30.38 9.04 -17.91 -4.53 5.55 -0.83 -8.34 -1.71 4.98 -1.06 -1.20 -0.93

Continuous simulation

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c -2.63 -1.89 1.02 -0.06 0.18 0.18 0.43 -0.05 0.05 0.05 0.09 -0.01
SD of c -5.46 -4.92 6.08 0.00 0.32 0.39 2.75 -0.15 0.17 0.22 0.94 -0.05
Mean of a -72.37 -52.17 28.02 -1.72 5.09 4.83 11.75 -1.39 1.48 1.50 2.54 -0.21
SD of a -42.69 -38.33 31.19 0.44 1.42 2.26 16.26 -0.53 0.85 1.33 6.71 -0.31
Top 5%
wealth share 72.61 14.93 4.90 2.29 -3.36 -2.39 5.72 0.77 -0.53 -0.08 4.44 -0.03

Note: we report in bold the lowest deviation, for each moment and number of grid points.

4.1.1 Comparison with two classic ‘ad-hoc’ approaches

In what follows we implement two of the well-known ad-hoc approaches that we discussed

in Section 2.4, and we assess their accuracy under the same type of income process as in

the previous subsection. The methods we consider are relatively easy to implement and

have well-documented steps that allow us to reproduce them accurately.

Huggett (1996) Table 3 reports percentage deviations from benchmark moments ob-

tained using the ad-hoc approximation in Huggett (1996). We compare this approxi-

mation to that obtained with the three methods considered so far. For this comparison

exercise we set ρ to 0.95.26 All parameter values are as in Section 4.1 with the exception

26This choice of ρ makes comparison to the previous tables easy and is almost identical to the value
of ρ = 0.96 used in the original paper by Huggett. Additional results are available from the authors.
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Table 4: Percentage deviations from benchmark moments: comparison of STY method
and the three methods, ρ = 1.00.

N = 81 N = 25 N = 50
STY Tau AC Rou Tau AC Rou
(%) (%) (%) (%) (%) (%) (%)

Markov-chain simulation

Mean of y -0.12 0.76 -0.48 -0.15 -0.17 -0.26 -0.08
SD of y -1.17 1.74 -6.48 -1.44 -2.70 -3.89 -0.61
Mean of c -0.12 0.98 -0.07 -0.13 -0.10 -0.07 -0.08
SD of c -1.08 2.30 -5.10 -1.28 -2.34 -3.05 -0.53
Mean of a -0.18 9.42 15.61 0.25 2.37 7.10 0.10
SD of a -0.31 4.84 17.43 -0.11 1.46 9.67 -0.08
Top 5% wealth share -0.17 -2.05 8.31 -0.19 -0.07 5.86 -0.12

Note: we report in bold the lowest deviation, for each moment and number of grid points.

of the variance of η0 which, in line with Huggett’s parameterization, we set to 0.7 times

the asymptotic variance rather than zero.27 It is apparent that, under the Markov-chain

simulation, Huggett’s method does worse than the other three. However, when simulating

using the continuous process, Huggett’s method does sometimes better than Tauchen. For

all simulation approaches (Markov-chain or continuous) and all grid sizes, the Rouwen-

horst method delivers a more accurate approximation of the benchmark moments. This is

not surprising given that Huggett’s method posits an age-invariant state-space and tran-

sition probabilities using the same approximation as in Tauchen (1986). Since Rouwen-

horst does better than our non-stationary (age-varying) adaptation of Tauchen’s method,

a fortiori one would expect it to outperform this age-invariant approach.

Storesletten et al. (2004b) Table 4 reports approximation results obtained imple-

menting the ad-hoc approach of Storesletten et al. (2004b) (henceforth STY) in our

canonical model. By construction this approach is only applicable to unit-root processes:

specifically, it is designed to approximate a random walk using binomial innovation steps

(that is, only two possible shocks are allowed in any period, each with probability 0.5).

Given initial conditions, the shocks generate a fanning out over the life-cycle and result

in a sequence of overlapping Markov chains which expand incrementally over an age-

27In line with intuition, the performance of Huggett’s discretization worsens as the difference between
the variance of the initial condition and the asymptotic one becomes larger.
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invariant state-space. Given a 40-year lifetime, the state-space has 81 grid points, which

is significantly more than what we use in our baseline implementations of Tauchen, Adda

and Cooper, and Rouwenhorst. As shown in Table 4, the Rouwenhorst discretization

with 25 grid points performs just as well as the STY approach does with more than

three times as many grid nodes. For comparison, we also show that if one were to use

Rouwenhorst with 50 grid points (still well below the 81 points of STY) the approxima-

tion performance would become significantly better.28 As mentioned above, unlike the

other three methods, the binomial-tree approximation is not easily generalized to AR(1)

processes with root less than unity.

4.2 Time-dependent conditional second moments

A recent literature (see Karahan and Ozkan, 2013; Guvenen et al., 2016; De Nardi et al.,

2018) has pointed out that both the persistence and conditional second moments of

earnings may not be constant over the life cycle, contrary to what the canonical earnings

process of the previous section assumes.

As discussed in Section 2, our non-stationary discretization methods can accommodate

processes with age-dependent conditional second moments ρt and σt. In this section, we

gauge the accuracy of the three discretization methods in approximating age-dependent

processes of this kind. In particular, we parameterize the income process following Kara-

han and Ozkan (2013).29 Namely, we set the variance of the transitory income com-

ponent to σ2
u = 0.0564, the age-dependent persistence to ρt = 0.7596 + 0.2039(t/10) −

0.0535(t/10)2 + 0.0028(t/10)3 and, finally, the variance of innovations in the persistent

component to σ2
εt = 0.0518− 0.0405(t/10) + 0.0105(t/10)2 − 0.0002(t/10)3.

Table 5 reports the results of this exercise. First, we note that the quality of the ap-

proximation using the Rouwenhorst method is just as accurate as in the age-independent

parameterization case. The Adda and Cooper method delivers a slightly improved ap-

proximation for most grid sizes, although it remains far less accurate than Rouwen-

28In fairness, while the suggested alternatives with 50 grid points run faster than our straightforward
implementation of STY with 81 points, the latter could be speeded up by exploiting the fact that, at each
age t, only t states are reached with positive probability. This would reduce the number of evaluations
to approximately the same as the other methods with 25 grid points, although at the price of some extra
coding effort.

29The only difference is that we set the distribution of η0 to be degenerate at zero.
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Table 5: Percentage deviations from benchmark moments: AR(1) with age-dependent
conditional second moments.

N = 5 N = 10 N = 25
Tau AC Rou Tau AC Rou Tau AC Rou
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Markov-chain simulation

Mean of y 4.50 -1.05 -0.11 1.85 -0.53 -0.07 0.12 -0.28 -0.04
SD of y 33.04 -11.80 -2.81 13.79 -6.47 -1.30 0.72 -3.19 -0.47
Mean of c 3.28 -0.35 -0.08 2.28 -0.26 -0.05 0.19 -0.29 -0.04
SD of c 29.35 -13.17 -2.56 13.71 -7.08 -1.17 0.68 -3.47 -0.42
Mean of a -26.03 16.31 0.66 12.55 6.45 0.38 1.80 -0.49 -0.01
SD of a -28.98 1.73 -3.81 10.15 -0.38 -1.79 0.73 -1.60 -0.71
Top 5% wealth share -5.09 -16.05 -5.08 -1.33 -7.68 -2.31 -0.84 -0.96 -0.79

Continuous simulation

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c -1.86 1.12 -0.10 0.17 0.50 -0.06 0.05 0.13 -0.03
SD of c -4.94 6.85 0.00 0.31 3.25 -0.17 0.24 1.21 -0.08
Mean of a -46.65 28.16 -2.57 4.37 12.59 -1.47 1.26 3.22 -0.64
SD of a -42.20 38.24 0.88 1.71 20.45 -0.74 1.74 8.85 -0.34
Top 5% wealth share 1.09 10.42 3.56 -2.55 9.08 0.68 0.43 6.03 0.28

Note: we report in bold the lowest deviation, for each moment and number of grid points.
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horst. Finally, the quality of results obtained using the Tauchen’s method is generally

unchanged. Hence, the key findings of our baseline numerical analysis are confirmed:

Rouwenhorst’s method performs significantly better for all grid sizes and moments, ex-

hibiting approximation errors that are often an order of magnitude smaller than the

alternatives. The largest discrepancies in the quality of approximations occur, again,

when looking at the distribution of assets.

4.3 Non-normal innovations

The seminal contributions of Guvenen et al. (2014) and Guvenen et al. (2016) docu-

ment how the distribution of earnings growth rates displays significant deviations from

normality. Given this observation, processes with non-normal innovations have become

more common in numerical implementations of heterogeneous agents’ models.30 Non-

normality is usually introduced parametrically by assuming stochastic processes that are

mixtures of normal processes.

In this section, we examine how the different discretization methods perform when

innovations to the persistent component of earnings (η in problem 19) are a mixture of

two normals. Namely, we consider the following non-normal shocks:

εt ∼

{
N(µ1, σ1) with probability p1,

N(µ2, σ2) with probability p2.
(20)

While our parameterization of the ε innovations’ process assumes the exact same

persistence and variances as in Section 4.1, it also exhibits negative skewness and high

kurtosis. The values of skewness and kurtosis are, respectively, -1.36 and 17.95 and are

taken from Civale et al. (2017), who target the corresponding moments in Guvenen et al.

(2016).31 Civale et al. (2017) also provide closed-form expressions to calibrate a mixture of

two normals so as to match the first four moments of a non-normal distribution. Applying

their formulas, and imposing that ε has mean zero, we obtain the following values for the

mixing probabilities pi, the means µi and the standard deviations σi (i = 1, 2) of the two

30See, for example, McKay (2017), Kaplan et al. (2018), De Nardi et al. (2018).
31Civale et al. (2017) propose a method to discretize a stationary AR(1) process with mixture-of-

normals innovations. Their method is based on Tauchen but differs from it because the state space
of the Markov chain is calibrated to minimize the distance between a set of targeted moments of the
undiscretized process and their counterparts computed using the Markov chain.
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normals: p1 = .9, p2 = .1, µ1 = .0089, µ2 = −µ1p1/p2, σ1 = .0635, σ2 = .3430. Note

that, as in Section 4.1, the persistent component is non-stationary because the initial

condition η0 = 0 is not a random draw from the limiting distribution of η.

Adapting Tauchen to allow for Gaussian-mixture innovations is straightforward. The

only change is that the transition probabilities satisfy

πijt =


Fε
(
η̄jt − ρη̄it−1 + ht/2

)
if j = 1,

1− Fε
(
η̄jt − ρη̄it−1 − ht/2

)
if j = N,

Fε
(
η̄jt − ρη̄it−1 + ht/2

)
− Fε

(
η̄jt − ρη̄it−1 − ht/2

)
otherwise.

(21)

where Fε is the cumulative density of the Gaussian mixture (20).

While adapting Adda and Cooper is also conceptually straightforward, its implemen-

tation is more involved. The cutoff points {[xit, xi+1
t ]}Ni=1 of the N intervals in period t

must now satisfy ∫ xit

−∞
fηt(u)du =

i− 1

N
, i = 1, ..., N + 1, (22)

where fηt is the (marginal or, equivalently, unconditional) density of ηt, which in turn

satisfies the recursive formula

fηt(u) =

∫ ∞
−∞

fε(u− ρv)fηt−1(v)dv (23)

with initial condition fη1(·) = fε(·). That is the probability of ηt to be in a neighborhood

of u is the probability of transiting from ηt−1 = v to ηt = u integrating over all possible

value of ηt−1. Then, the transition probability πi,jt is defined as the probability of η moving

from the interval [xit, x
i+1
t ] to the interval [xjt+1, x

j+1
t+1 ], between t and t+ 1.

Note that, contrary to the Normal case, both the transition probabilities and the

density used to compute the cutoff points in equation (22) are not available in closed-

form and have to be computed numerically. We do this by using Montecarlo integration,

drawing a panel of 2,000,000 histories.

Lastly, Rouwenhorst’s method requires no adaptation because, by construction, it

matches only moments up to the second order and cannot target higher order moments.

Nonetheless we still include it in our evaluation for the purpose of comparison.

Tables 6 and 7 report the percentage deviations from the benchmark moments under,
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respectively, the Markov-chain and continuous simulations. Given the non-normality of

the earnings process we also report measures of skewness and kurtosis for each variable. In

order to reduce the impact of sampling error, in line with the literature (see, e.g., Guvenen

et al., 2016), we report measures—Kelly skewness and Crow-Siddiqui kurtosis—that are

robust to extremes. More precisely, Kelly’s measure of skewness is defined as

SK =
(P90− P50)− (P50− P10)

P90− P10

and takes values between -1 and +1, while Crow-Siddiqui kurtosis is

κC−S =
P97.5− P2.5

P75− P25

and equals 2.91 for the normal distribution.

In the Markov-chain simulations, Rouwenhorst tends to deliver the most accurate

approximation of the first two moments. This is not surprising in the case of income,

since it targets them explicitly. Similarly, Tauchen and Adda and Cooper yield a better

approximation of income’s higher moments, as they do exploit the distributional assump-

tions.32 The same pattern applies to the consumption moments. Looking at the other

moments, Rouwenhorst tends to perform better than the alternatives at lower grid sizes,

especially when approximating the asset distribution. In fact, it provides a better fit of

the higher asset moments even with just 5 grid points.

In the continuous simulation case, where the Markov-chain approximation is not used

to simulate income histories, the performance of Rouwenhorst’s discretization is even

better. In fact, it tends to outperform the other two methods for most moments. This

suggests that its advantage lies partly in placing grid points in a way that reduces inter-

polation errors.

One caveat is in order: all discretization methods appear to provide a relatively poor

approximation of the higher-order moments of consumption and assets when ρ = 1 and

grid size is small. This problem is especially severe in the case of discrete (Markov-

chain) simulations. In such cases, even the best performing approach (Rouwenhorst) can

32Note that, by construction, the Rouwenhorst Markov chain implies a symmetric (i.e., zero-skewness)
process up to sampling error. This accounts for an approximation error equal, or close, to -100% (zero
as opposed to the true negative value) for income skewness.
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Table 6: Percentage deviations from benchmark moments: AR(1) with non-normal inno-
vations, Markov-chain simulation.

N = 5 N = 10 N = 25
Tau AC Rou Tau AC Rou Tau AC Rou
(%) (%) (%) (%) (%) (%) (%) (%) (%)

ρ = 0.95

Mean of y -4.36 -0.98 0.13 -0.92 -0.51 0.15 0.17 -0.25 0.16
SD of y 52.77 -12.54 0.78 14.91 -7.43 2.03 -2.60 -3.87 2.66
Skewness of y 212.23 8.04 -100.00 51.00 -84.13 -220.48 -35.73 28.04 -100.00
Kurtosis of y 9.16 -22.54 -35.76 3.41 -12.56 16.04 -0.61 16.35 -18.61
Mean of c -2.61 -0.48 0.29 -0.35 -0.22 0.30 0.21 -0.10 0.31
SD of c 52.72 -14.46 1.02 16.56 -8.14 2.24 -2.53 -4.02 2.86
Skewness of c 37.41 -21.89 35.34 28.14 2.82 11.93 5.97 2.83 13.28
Kurtosis of c 13.65 -20.11 -20.53 -1.07 -7.03 -3.35 -2.53 -1.14 -8.78
Mean of a 57.78 16.83 5.73 19.32 9.69 5.42 1.53 5.09 5.31
SD of a -26.11 -6.23 -1.63 -6.34 -5.57 0.88 -5.49 -3.85 2.04
Skewness of a -89.32 -3.55 5.97 -24.66 -2.81 5.51 -2.33 -4.38 5.28
Kurtosis of a -28.01 -24.48 -8.50 -12.87 -6.58 -6.13 -4.04 1.06 -4.77
Top 5% wealth share -49.37 -24.63 -7.64 -19.88 -14.54 -4.77 -6.02 -6.46 -3.41

ρ = 0.98

Mean of y -2.83 -1.55 0.21 -1.89 -0.81 0.26 0.33 -0.39 0.30
SD of y 54.28 -15.55 -0.79 22.25 -9.60 1.44 -1.40 -5.25 2.69
Skewness of y -13.14 24.13 -100.00 33.24 -71.17 -203.91 -86.80 8.28 -100.00
Kurtosis of y 14.34 -22.08 -26.85 0.18 0.05 27.91 -4.66 4.25 0.39
Mean of c -0.74 -0.43 0.31 -0.44 -0.12 0.37 0.48 -0.04 0.40
SD of c 48.50 -15.39 -0.63 20.04 -9.33 1.58 -1.20 -5.06 2.82
Skewness of c 43.17 -2.73 25.29 25.94 6.60 26.62 7.11 3.62 16.27
Kurtosis of c 24.52 -16.07 -15.32 -6.37 -5.93 4.30 -1.08 -1.06 -5.02
Mean of a 79.75 42.66 4.34 55.35 26.37 4.47 6.53 13.45 4.50
SD of a -32.87 21.65 -1.80 -31.69 11.81 0.98 -2.88 5.16 2.34
Skewness of a -138.25 10.00 10.35 -109.63 4.54 11.15 -3.19 -4.41 10.16
Kurtosis of a -45.06 -18.51 -4.42 -35.12 8.52 -3.74 -4.68 14.57 -2.83
Top 5% wealth share -66.17 -19.27 -5.36 -55.39 -8.93 -2.76 -7.08 -1.60 -1.52

ρ = 1.00

Mean of y 0.42 -2.53 0.30 -1.68 -1.36 0.50 0.32 -0.67 0.53
SD of y 59.99 -22.34 -4.71 24.01 -14.96 -0.32 -1.54 -8.96 1.99
Skewness of y 95.85 49.84 -87.93 58.60 -41.44 -191.01 -60.76 9.87 -91.19
Kurtosis of y 19.30 -20.22 -22.27 5.22 6.59 16.89 -4.84 0.80 -2.66
Mean of c 2.39 -0.85 0.43 0.01 -0.29 0.61 0.69 -0.10 0.62
SD of c 54.89 -18.59 -4.17 20.75 -12.19 -0.01 -1.05 -7.29 2.16
Skewness of c 53.47 1.24 18.40 24.65 7.39 38.46 6.69 2.55 3.78
Kurtosis of c 10.06 -9.62 -12.54 -0.34 -3.95 16.10 3.57 0.75 -4.21
Mean of a 90.75 74.76 6.64 76.00 47.97 5.60 17.36 25.19 4.98
SD of a 95.59 190.83 12.44 58.54 132.06 9.21 16.34 80.17 7.18
Skewness of a -510.78 1059.18 394.40 -484.98 636.37 232.31 -19.55 -96.30 175.85
Kurtosis of a -48.85 7.85 8.54 -37.59 50.69 5.57 -7.85 54.11 4.78
Top 5% wealth share -27.14 50.83 5.55 -29.08 61.42 4.12 -3.31 54.81 2.77

Note: we report in bold the lowest deviation, for each moment and number of grid points.
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Table 7: Percentage deviations from benchmark moments: AR(1) with non-normal inno-
vations, continuous simulation.

N = 5 N = 10 N = 25
Tau AC Rou Tau AC Rou Tau AC Rou
(%) (%) (%) (%) (%) (%) (%) (%) (%)

ρ = 0.95

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Skewness of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Kurtosis of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c 1.06 0.84 -0.04 0.42 0.44 -0.01 0.08 0.21 0.03
SD of c -0.87 5.86 0.29 -0.56 3.01 0.00 0.36 1.29 0.03
Skewness of c 15.51 13.73 1.36 17.65 7.10 0.61 2.88 5.08 -0.98
Kurtosis of c -17.78 2.35 -0.28 -6.58 -1.21 -0.17 -0.03 -0.75 -0.09
Mean of a 37.54 29.90 -1.44 14.93 15.64 -0.23 2.91 7.46 0.90
SD of a -46.92 38.16 2.94 -13.58 22.01 0.33 2.85 10.13 0.09
Skewness of a -119.12 2.50 1.17 -35.56 -2.95 0.66 -1.57 -4.40 -0.22
Kurtosis of a -34.39 17.95 3.68 -17.27 14.79 0.39 -0.49 4.03 -0.28
Top 5% wealth share -60.45 7.31 3.64 -24.33 6.34 0.30 -0.39 2.21 -0.73

ρ = 0.98

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Skewness of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Kurtosis of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c 1.02 1.52 -0.14 1.25 0.88 -0.06 0.18 0.43 0.01
SD of c -2.70 10.03 0.77 -1.33 5.91 0.00 0.65 2.91 -0.01
Skewness of c 13.25 10.92 -0.80 15.44 5.55 -0.93 2.91 3.56 0.46
Kurtosis of c -15.45 5.66 -0.23 -8.92 -0.07 -0.14 0.09 -0.95 0.02
Mean of a 40.30 60.11 -5.65 49.22 34.75 -2.55 7.18 16.90 0.52
SD of a -43.26 100.25 13.41 -33.73 65.60 1.61 8.52 35.87 0.13
Skewness of a -146.22 17.60 7.49 -123.74 0.51 3.62 -4.05 -5.88 0.58
Kurtosis of a -45.63 34.30 8.23 -39.30 35.71 0.40 -2.34 14.62 -0.43
Top 5% wealth share -64.61 23.79 13.21 -57.43 20.60 2.32 -1.10 11.05 -0.39

ρ = 1.00

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Skewness of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Kurtosis of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c 0.85 2.18 -0.25 1.48 1.33 -0.15 0.36 0.67 -0.01
SD of c -0.66 17.78 3.28 -0.67 11.91 0.42 1.32 6.85 -0.04
Skewness of c 8.83 8.38 -1.21 11.89 4.60 -2.15 3.34 2.61 0.38
Kurtosis of c -12.61 8.07 -0.76 -7.72 1.42 -0.09 0.01 -0.59 0.09
Mean of a 39.12 100.18 -11.44 68.25 61.00 -6.87 16.73 30.83 -0.42
SD of a 64.95 490.95 137.61 53.36 361.55 28.41 56.66 236.93 0.83
Skewness of a 220.01 1108.27 -46.60 -323.92 429.33 5.20 -51.04 -148.81 -0.09
Kurtosis of a -35.01 87.15 12.36 -35.47 89.04 -0.45 -8.45 43.41 -1.22
Top 5% wealth share -12.50 158.32 71.73 -28.66 137.87 9.12 6.75 90.00 0.56

Note: we report in bold the lowest deviation, for each moment and number of grid points.
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deliver very imprecise approximations of wealth, and to a smaller extent, consumption

higher moments. The poor approximation of higher-order moments is an issue with all of

these discretization methods and its severity increases with the persistence of the income

process.

5 Conclusion

Non-stationary persistent income processes are commonplace in quantitative studies of

life-cycle behavior and inequality. Introducing such processes into numerical models re-

quires approximating their distribution by means of a finite-state approximation, usually

a Markov chain. The quality of the approximation is important for the accuracy of

implied evolution of the cross-sectional distribution of consumption, income and wealth

across age groups. Large approximation errors may result in misleading inference.

This paper derives new generalizations of Tauchen (1986), Adda and Cooper (2003)

and Rouwenhorst’s (1995) discretization methods to the case of non-stationary processes,

like the ones commonly employed in life-cycle economies. It also provides a systematic

examination of the performance of these methods when used in a life-cycle income fluc-

tuation problem under a variety of assumptions for the income process.

Throughout our analysis we find large differences in the quality of the approximations

relative to a very accurate benchmark. In many cases we find that deviations from

benchmark moments are large. Adda and Cooper and Tauchen are generally much less

precise than Rouwenhorst. This discrepancy is most severe when considering wealth

moments, for which the relative size of approximation errors can differ by an order of

magnitude. In many cases we find that Rouwenhorst delivers with just 5 grid points

more accurate moments than the other methods do with 10 or 25 grid points.

We also find, that when shocks are non-normally distributed, all methods do a pretty

poor job in approximating higher order moments of consumption and wealth, although

Rouwenhorst still tends to do somewhat better. This problem is worse the higher the

persistence of the income process. Even adding grid points does not always improve the

quality of the approximations by much. Arguably, adding more grid points results in

consistent and significant improvements in the approximation of higher-order moments
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of consumption and wealth only when using the Rouwenhorst method. This is surpris-

ing insofar Rouwenhorst does not directly target the higher order moments of income,

whereas both Tauchen and Adda and Cooper incorporate the distributional assumptions

by construction.
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A Appendix

A.1 The benchmark solution

Let ct(zt, ηt) denote the consumption policy function with state variables current cash at

hand zt and the AR(1) component of (log) labor income ηt. Define two time-invariant,

exogenous, grids Ga = {ai}mi=1 and Gη = {ηj}nj=1, respectively for assets a and for η,33

where the lower bound on the asset grid a1 = 0, the value of the borrowing constraint.

For any t < T , the optimal saving policy when borrowing is unconstrained satisfies

the Euler equation

(zt − at)−1 =
∂Ṽt+1(at, ηt)

∂at
(24)

where, from the envelope theorem, the marginal continuation utility satisfies

∂Ṽt+1(at, ηt)

∂at
= β(1 + r)Et[ct+1((1 + r)at + e(ρηt+εt+1+ut+1), ρηt + εt+1)]−1. (25)

Suppose for the moment that the function ∂Ṽt+1(at, ηt)/∂at is known. For each pair

(at, ηt) ∈ Ga × Gη, we use Carroll’s (2006) endogenous gridpoint methods to solve the

Euler equations backward for the “endogenous” value of cash at hand

zit(η
j) = ai +

(
∂Ṽt+1(ai, ηj)

∂at

)−1

(26)

which satisfies (24); namely the value of cash at hand for which ai is the optimal saving

choice given ηt = ηj. From the dynamic budget identity, the value of the consumption

function at the gridpoints (zit(η
j), ηj), i = 1, . . . ,m, j = 1, . . . , n is given by

ct(z
i
t(η

j), ηj) = zit(η
j)− ai. (27)

The finite mapping thus obtained can be used to construct an interpolating approximation

to the (continuous) consumption function.

Note that, by construction, the endogenous grid method returns the exact lower bound

on cash at hand z1
t (ηj) below which the borrowing constraint at ≥ a1 = 0 for ηt = ηj.

33We use 1,000 grid Points for a and 10,000 grid points for η.
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Therefore, for all zt below such bound the consumption function has the linear form

ct = zt.

Given the consumption function at time t + 1, the conditional expectation

∂Ṽt+1(at, ηt)/∂at is computed using equation (25) and involves integration over the inno-

vations εt+1 and ut+1. We approximate their distributions using Gaussian Hermite nodes

and weights. Finally, evaluating the consumption function on the right hand side of (25)

in between grid points requires interpolating over both (zt, ηt), for which we use bi-linear

interpolation.

The system of difference equations (25)-(27) is solved backward starting from the last

period t = T in which the consumption function satisfies

cT (zT , ηT ) = zT .

A.2 Normalized problem with unit-root labor income

In the case in which the (log) income process has a unit root and the felicity function

has the CRRA form, it is well known from Carroll (2004) that it is possible to normalize

problem (19) by the permanent component exp(ηt) of labor income yt = exp(ηt + ut),

thereby reducing the effective state space to a rescaling of zt.

To see this, replace for ct = zt − at in (19) and consider the problem in the second-

to-last period

VT−1(zT−1, ηT−1) = max
aT−1

log(zT−1 − aT−1) + βET−1 log(zT ) (28)

If one defines the state variables ẑt = zt/ exp(ηt) and ât = at/ exp(ηt), equation (28)

can be rewritten as

VT−1(zT−1, ηT−1) = max
âT−1

log(exp(ηT−1)(ẑT−1 − âT−1)) + βET−1 log(exp(ηT )ẑT )

= (1 + β)ηT−1 +

{
max
âT−1

log(ẑT−1 − âT−1) + βET−1 log(ẑT )

}
, (29)

where the second line follows from ET−1 log(exp(ηT )) = ηT−1.

Note that by definition
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ẑt = (1 + r)
at−1

exp(ηt−1 + εt)
+ exp(ut) = (1 + r)

ât−1

exp(εt)
+ exp(ut), (30)

which implies that the curly bracket in (29) is equal to VT−1(ẑT−1) where the latter

satisfies the Bellman equation

VT−1(ẑT−1) = max
âT−1

log(ẑT−1 − âT−1) + βET−1VT (ẑT ) (31)

with VT (ẑT ) = log(ẑT ).

Equations (29) and (31) imply that VT−1(zT−1, ηT−1) = (1 + β)ηT−1 + V (ẑT−1). The

same logic implies that this holds also for any t < T − 1.

Therefore the Bellman equation for the problem in normalized form satisfies

Vt(ẑt) = max
ât

log(ẑt − ât) + βEtVt+1(ẑt+1), (32)

for all t. It follows from (30) and the envelope condition that the associated Euler equation

is
1

ĉt
= β(1 + r)Et

1

ĉt+1

. (33)

The advantage of the normalized problem (32) is that one can first solve, very accurately

(see Barillas and Fernández-Villaverde, 2007), for the saving function ât(ẑt) using the

endogenous gridpoint method with only one-dimensional interpolation with respect to ẑt.

Under the assumption that εt and ut are i.i.d. and normally distributed, the expectation

in equation (33) can be computed using the, again, very accurate Gaussian Hermite

quadrature.

Recovering the non-normalized policy function at(zt, ηt) = ât(ẑt) exp(ηt) then does

not require interpolation with respect to ηt.

In Table 8 we compare the results from this alternative accurate solution of the

random-walk special case and the results from our baseline solution. As one can see,

they are effectively identical.

36



Table 8: Percentage deviations of moments of the benchmark solution relative to moments
obtained for quasi-exact solution of normalized problem (random walk case).

Moment Deviation (%)

Mean of y 0.0000
SD of y 0.0000
Mean of c -0.0001
SD of c -0.0001
Mean of a -0.0031
SD of a -0.0032
Top 5% wealth share -0.0001

A.3 Robustness: calibration of Ω in Tauchen method

In what follows we examine the effect of using alternative values for Ω on the performance

of Tauchen’s method. In his original paper, Tauchen (1986) simply sets Ω = 3. Kopecky

and Suen (2010) argue that the choice of Ω affects the approximation performance of this

method. For this reason, they calibrate Ω so that the standard deviation of the Markov

chain is equal to the standard deviation of the (stationary) AR(1) process.

Our results in the main text are based on the original Tauchen parameterization

(that is, we set Ω = 3). To check whether a different value of Ω would improve the

performance of Tauchen’s method significantly, we also experiment with a more flexible

parameterization. Namely, in our non-stationary setting, we allow Ω to vary with age t

and we calibrate it to match the unconditional standard deviation of the AR(1) process σt

at each age.34 We then compare the performance of the baseline Tauchen approximation

with that of the Tauchen’s method with age-dependent Ω’s. This exercise is carried out

in the context of our canonical AR(1) process, described in Section 4.1, with ρ = 1.

Results are in Table 9, where we also show the performance of Rouwenhorst’s method for

comparison. As before, Table 9 displays the percentage deviations of the approximated

moments from the benchmark counterparts.

34The calibrated values of Ωt vary with both age t and the number of grid points N (as well as with
the parameters of the AR(1) process). Specifically, the calibrated Ωt decreases with age and increases
with N . For N = 5, Ωt ranges from 1.669 at t = 40 to 1.934 at t = 1; in the cases of N = 10 and
N = 25, Ωt takes values between [1.946, 2.439] and [2.430, 2.983], respectively. While, prima facie, it may
be surprising that Ωt is decreasing with age, the explanation for this is simple: as shown in equation 5,
the highest and lowest grid points are defined as the product of Ωt and σt, with σt growing significantly
with age as described in equation 2. For this reason the range of variation of earnings increases with age
even if Ωt gets smaller. All Ωt values are available upon request.
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When N = 5, the calibrated Tauchen method performs better than the baseline

Tauchen; however, these performance gains are reverted when N = 10 and N = 25: in

these cases Tauchen’s method with calibrated Ω does a much poorer job than its counter-

part with Ω = 3 for most moments. Notably, neither of the two Tauchen implementations

performs better than Rouwenhorst’s method, for all grid sizes. We thus conclude that,

while the choice of Ω does have an effect on the performance of Tauchen’s method when

using few grid points, even a carefully calibrated choice of this parameter does not guar-

antee a performance boost sufficient to make the approximation quality comparable to

that obtained using the Rouwenhorst’s method.

Table 9: Robustness check: baseline Tauchen (Ω = 3) vs Tauchen with calibrated Ω.
Rouwenhorst approximation reported for comparison.

N = 5 N = 10 N = 25

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Tau Tau* Rou Tau Tau* Rou Tau Tau* Rou
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Markov-chain simulation

Mean of y 8.82 -0.62 -0.38 5.48 -0.51 -0.18 0.76 -0.30 -0.15
SD of y 40.02 -12.46 -7.92 23.35 -10.29 -3.67 1.74 -5.96 -1.44
Mean of c 8.21 -0.80 -0.32 5.68 0.15 -0.15 0.98 -0.09 -0.13
SD of c 37.00 -12.66 -7.29 22.43 -8.39 -3.33 2.30 -5.10 -1.28
Mean of a -14.86 -7.48 1.72 13.12 24.89 0.83 9.42 7.69 0.25
SD of a -26.26 -16.29 -0.41 -2.92 17.24 -0.16 4.84 5.74 -0.11
Top 5% wealth share -19.61 -11.14 -1.11 -13.26 -0.18 -0.43 -2.05 0.80 -0.19

Continuous simulation

Mean of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SD of y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean of c -1.00 -0.25 -0.38 0.06 0.71 -0.25 0.21 0.24 -0.10
SD of c -0.95 2.34 2.03 -0.66 5.60 -0.18 1.01 2.55 -0.18
Mean of a -38.61 -9.72 -14.57 2.15 27.52 -9.72 8.20 9.21 -3.82
SD of a -39.32 16.54 21.34 -8.26 56.99 -0.80 8.82 24.61 -1.16
Top 5% wealth share -9.26 16.82 29.11 -12.61 20.89 6.58 -0.16 9.10 1.96

Notes: (1) We report in bold the lowest deviation, for each moment and number of grid points.
(2) Tau (columns 1, 4 and 7) denotes results from the baseline Tauchen method (Ω = 3 and constant
over time); Tau* (columns 2, 5 and 8) denotes the Tauchen method with calibrated, age-varying Ωt.
Columns 3, 6 and 9 reports the percentage deviations for the Rouwenhorst approximation.
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