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Abstract
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1 Introduction
Most stochastic, dynamic optimization problems cannot be solved analytically and their
numerical solution is often computationally intensive. Computational costs are com-
pounded for problems with non-convex choice sets (non-concave problems in what fol-
lows), such as problems that involve both discrete and continuous choices, or fixed ad-
justment costs.1 Since, in general, the value function of these problems is non-concave or
has kinks, short of introducing sufficient uncertainty to guarantee smoothness and con-
cavity of the value function,2 one cannot apply more efficient solution methods relying
on, necessary and sufficient, first-order conditions. Instead, one has to resort to value
function iteration (VFI hereafter), which is notoriously slow.3

This paper develops an algorithm which is much more efficient and accurate than
standard VFI to solve a class of dynamic programming problems—including problems
with mixed discrete-continuous choices and fixed adjustment costs4—with non-smooth
or non-concave value functions. The algorithm applies to problems in which the per-
period objective function is strictly concave and twice-differentiable with respect to the
continuous choices. Clausen and Strub (2012) prove that a milder requirement implies
that first-order conditions are still necessary for a local maximum for a continuous choice,
away from its bounds.5 This paper exploits their result to generalize the endogenous grid
method (EGM hereafter) first proposed by Carroll (2006), and its extension to value
function iteration by Barillas and Fernández-Villaverde (2007), to the class of problems
considered. The algorithm is illustrated for a consumer problem with one continuous
(wealth) and one discrete (durables) endogenous state variable and fixed durable adjust-
ment costs. Compared to the VFI benchmark, the algorithm yields substantial savings
in computational time and has higher accuracy.

Consider the problem of solving for the optimal continuous choice for a given value of
the discrete choice. Standard solution methods fix a grid for the continuous endogenous
state variable—wealth in our application—at the beginning of the period and solve for-
ward for the optimal choice of end-of-period wealth. Carroll’s (2006) EGM instead fixes
a grid for end-of-period wealth and solves the first-order condition backward for the asso-
ciated values of wealth at the beginning of the period. The EGM approach is much faster
as the first-order condition is often linear in current assets (or an appropriate auxiliary
variable), but non-linear in next period’s ones.

The standard EGM, though, cannot be used when the value function is non-concave
as the first-order condition is necessary but not sufficient for an interior optimum. The
generalization proposed here addresses this problem, by supplementing the EGM step

1Discrete choices arise naturally in quantitative analyses of retirement behavior (Rust 1989), labor
supply (Gomes, Greenwood and Rebelo 2001), education (Abbott, Gallipoli, Meghir and Violante 2013).
Fixed adjustment cost are found in quantitative studies of investment (Khan and Thomas 2008, Bloom
2009) and consumer-durables choice (Luengo-Prado 2006, Bajari, Chan, Krueger and Miller 2009).

2This is the approach followed, e.g., in Gomes et al. (2001) and Khan and Thomas (2008).
3To be precise, most papers—e.g. Rust (1989), Luengo-Prado (2006), Bloom (2009), Bajari et al.

(2009)—use VFI on a discretized state space.
4Since inaction may be optimal in the presence of fixed adjustment costs, they induce a discrete,

extensive (action/inaction) margin.
5In other words, the value function is differentiable in the endogenous continuous state variables at

the maximum, if interior, but not necessarily everywhere.
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with a discretized-VFI step to verify whether the grid point is not only a local but also
a global maximum. The solution is very accurate because the EGM step determines
the initial value of the continuous state variable for which the first-order condition holds
exactly. The discretized-VFI step is used only to verify whether the candidate global
maximum is indeed so or to discard it.

The generalized EGM algorithm described above is used to obtain the value functions
for each given value of the discrete choice. A second VFI maximization step over the
discrete choice variable then recovers the discrete policy function by taking the upper
envelope over the discrete-choice-specific value functions.

Barillas and Fernández-Villaverde (2007) were the first to propose this kind of nesting
of EGM within VFI for problems with more than one continuous control. Their algorithm
uses a (standard) EGM step to optimize with respect to one continuous choice variable
while keeping the other policy functions fixed. These are then updated by the VFI step.
The important difference between their paper and the present one is the generalization of
the internal EGM step to deal with problems with a non-concave and non-smooth value
function. Hintermaier and Koeniger (2010) extend EGM to the case in which there are
two continuous endogenous state variables and occasionally binding constraints on both.

Both Barillas and Fernández-Villaverde (2007) and Hintermaier and Koeniger (2010)
apply only to problems with a concave and differentiable value function and are, therefore,
not suitable to solve the class of problems considered here. Conversely, the algorithm in
this paper is less accurate—for the same execution time—than those in Barillas and
Fernández-Villaverde (2007) and Hintermaier and Koeniger (2010), within the class of
problems to which they apply, as it relies on the discretization of one of the two continuous
choices.

The paper is structured as follows. Section 2 introduces the problem and the prop-
erties of the solution that underpin the solution algorithm. Section 3 describes the basic
algorithm while Section 4 discusses how to modify it to exploit monotonicity and deal
with problems with occasionally-binding borrowing constraints. Section 5 reports the
numerical results, while Section 6 concludes.

2 The problem
The algorithm in this paper applies to a class of dynamic programming problems that in-
cludes problems with one continuous and an arbitrary number of discrete choices. In what
follows, we illustrate it for an optimal consumption problem involving one continuous and
one discrete choice.6

6Since values for multiple discrete choices can always be stacked into a single vector, assuming a single
discrete choice is without loss of generality.
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2.1 The model
A household makes a continuous non-durable consumption choice ct ∈ C and a discrete
durable consumption choice7 dt+1 ∈ D in each period t to maximize

E0

∞∑
t=0

βsu(ct, dt+1), (1)

where β ∈ (0, 1) is a discount factor and the function u is strictly increasing in both
its arguments and continuous in ct. More formally C is an interval in R+ while D is a
countable, compact subset of R+, with smallest element normalized to zero and cardinality
larger than one.

The relative price of durables in terms of non-durables is normalized to one. The
durable stock is subject to an adjustment cost h(dt, dt+1) = Idt+1 6=dtφdt+1, with φ > 0 and
Idt+1 6=dt an indicator function equal to one if dt+1 6= dt and one otherwise. The discreteness
of D, together with the fact that the adjustment cost has a fixed component,8 imply that
the choice set is non-convex.

In each period, the household earns a stochastic labor income yt which follows an
m-state Markov chain with transition matrix P and state space Y = {y1, . . . , ym}, with
y1 ≥ 0 and yi > yi−1, i = 2, . . . ,m. The household also earns capital income rwt, where
r > 0 is the risk-free rate of return and wt financial wealth at the beginning of period t.

It follows that the household dynamic budget identity can be written as

ct + wt+1 + dt+1 + h(dt, dt+1) = yt + (1 + r)wt + dt. (2)

The non-durable consumption choice is bounded below by a non-negativity constraint

ct ≥ 0 (3)

and above by a borrowing constraint

wt+1 ≥ −γy1 − ξdt+1, (4)

where γ ∈ [0, r−1] is the fraction of minimum labor income and ξ ∈ [0, (1 + r)−1] the
fraction of the durable stock that can be collateralized.

The restrictions on the two parameters γ and ξ require that the lowest feasible wealth
level is never lower than the natural (in Aiyagari’s (1994) sense) borrowing limit that
obtains when both parameters are at their upper bounds.9 The restrictions imply that
the household choice set is bounded.

7I adopt the notational convention of indexing durable consumption at time t by t+ 1 to simplify the
notation in the recursive problem.

8To see this, note that when dt+1 6= dt, the adjustment cost can be rewritten as h(dt, dt+1) =
φdt + φ(dt+1− dt), where the first addendum is the (fixed, hence non-convex) cost component unrelated
to the investment flow (dt+1 − dt).

9To see this, note that when γ = r−1 and ξ = (1 + r)−1 the borrowing limit for a household with
current durable stock dt+1 equals the present value of the durable stock next period plus human wealth
along the worst possible income history. This is the maximum amount that can be repaid with probability
one next period, without violating the non-negativity constraint on consumption (3), by downsizing the
durable stock to zero and keeping it at zero forever after.
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The household maximizes (1) subject to the constraints (2)-(4) and dt+1 ∈ D.
Let

at+1 = wt+1 + γy1 + ξdt+1 (5)
and let
z(dt+1; at, dt, yt) = yt + (1 + r)at − (1− ξ)(dt+1 − dt)− h(dt, dt+1)− r(γy1 + ξdt) (6)

denote total resources available for consumption after (conditional on) the durable choice
dt+1. The dynamic budget identity (2) and the borrowing constraint (4) become10

ct + at+1 = z(dt+1; at, dt, yt) (7)
and

at+1 ≥ 0. (8)
Let Ω(·, ·; ·, ·, ·) denote the feasibility set, with Ω(at+1, dt+1; at, dt, yt) one specific point

in it and
Ω(·, ·; at, dt, yt) = {at+1, dt+1 : at+1 ∈ [0, z(dt+1; at, dt, yt)], dt+1 ∈ D}

the set of feasible end-of-period values for the endogenous state variables if the current
state is (at, dt, yt).

The household sequence problem can then be written in the canonical form

max
{at+1,dt+1}∞

t=0

E0

∞∑
t=0

βsu(z(dt+1; at, dt, yt)− at+1, dt+1), (9)

s.t. (at+1, dt+1) ∈ Ω(·, ·; at, dt, yt), t = 0, 1, . . . ,
(a0, d0, y0) ∈ A×D × Y given.

2.2 The recursive problem
Standard results imply that Bellman’s principle of optimality applies to problem (9).
Dropping time indices, its recursive representation can be written as

V(a, d, y) = max
(a′,d′)∈Ω(·,·;a,d,y)

u(z(d′; a, d, y)− a′, d′) + Ṽ (a′, d′; y), (10)

where V(a, d, y) is the value function in state (a, d, y) and
Ṽ (a′, d′; y) = βEV(a′, d′, y′) (11)

denotes the expectation of the continuation value.
The following, rather standard, assumptions characterize the class of problems con-

sidered in this paper. For comparability with Clausen and Strub (2012), it is useful to
state them with reference to a general utility functional U(a′, d′; a, d, y),11 where

U(a′, d′; a, d, y) = u(z(d′; a, d, y)− a′, d′) (12)
in the present set up.

10Similarly to Aiyagari (1994), the change of variable defined by equation (5) usefully implies that the
grid for the continuous state variable in the solution algorithm is independent of the borrowing limit and
here, in particular, of the current durable choice.

11Stating the assumptions in terms of a general utility functional also highlights that the algorithm
applies to any problem in which the objective function satisfies the assumptions; e.g., the investment
problem of a risk-neutral firm with a concave production function and fixed adjustment costs.
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Assumption 1. The per-period utility function U(a′, d′; a, d, y) is differentiable with re-
spect to a′ on the interior of Ω(·, d′; a, d; y) and with respect to a on the interior of
Ω(a′, d′; ·, d; y).

Assumption 2. The second derivative Ua′a′(a′, d′; a, d, y) is strictly negative.

It follows from equation (12) that assumptions 1 and 2 are satisfied if u(c, d′) is
twice differentiable and strictly concave with respect to c and if z(d′; a, d, y) is a smooth
function of a. They imply concavity, and differentiability of the value function away from
bounds, if the choice set Ω(·, ·; a, d, y) is convex (see Theorem 4.11 in Stokey, Lucas and
Prescott 1989). This would be the case, for example, if there were no discrete choice. As a
result, the maximand in equation (10) would be the sum of two concave and differentiable
functions and the first-order condition

− uc(z(d′; a, d, y)− a′, d′) + Ṽa(a′, d′; y) = 0 (13)

would be necessary and sufficient for a maximum for a′ on the interior of Ω(·, d′; a, d; y)—
an interior maximum for a′ in what follows. The necessity and sufficiency of the first-
order condition (13) lies at the heart of Carroll’s (2006) original EGM, whose contribution
consists in providing an efficient algorithm for solving it.

Here, though, Ω(·, ·; a, d, y) is non-convex as d′ is a non-degenerate discrete variable.
It follows that, in general, the value function

V(a, d, y) = max
d′∈D

Vd′(a, d, y), (14)

the upper envelope of the d′-contingent value functions

Vd′(a, d, y) = max
a′∈Ω(·,d′;a,d,y)

u(z(d′; a, d, y)− a′, d′) + Ṽ (a′, d′; y), (15)

has kinks at those values of a for which the discrete choice d′ switches, and is globally
non-concave. As a result, the continuation value Ṽ (a′, d′, y) is also non-smooth and non-
concave, in general, and the first-order condition (13) is no longer sufficient for an interior
solution to equation (15).

Yet, Theorem 3 in Clausen and Strub (2012) establishes that, if Assumption 1 and a
technical regularity condition hold, at an optimum (ā′, d̄′) the maximand in equation (10)
is differentiable with respect to a′, away from bounds. The intuition is the following. On
the interior of the choice set for a′, kinks in the maximand can only be due to downward-
pointing kinks in the continuation value Ṽ (a′, d′, y) at those value of a′ for which the
future discrete choice changes. Since the derivative of the maximand with respect to a′
jumps up at a downward kink, an interior maximum cannot be located at a kink; namely
the agent is never indifferent between two discrete choices at an optimum. It follows that
the first-order condition (13) is still necessary for a interior local maximum, and therefore
for a candidate interior global maximum, of equation (15).

The generalized EGM algorithm in this paper exploits the fact that the first-order
condition is still necessary, and the standard EGM insight is still valid, for an interior
optimal d′-contingent saving choice in equation (15). The non-concavity of the continu-
ation value Ṽ (a′, d′, y) with respect to a′, though, implies the EGM algorithm cannot be
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applied in its original form as equation (13) is not sufficient; a zero of equation (13) is
not necessarily an interior global maximum for (15).

Two final remarks are in order before proceeding. First, the regularity condition
required for Clausen and Strub’s (2012) result is somewhat technical. It is implied (see
p. 15 in Clausen and Strub 2012), though, by the following standard assumption which
is maintained throughout.

Assumption 3. The felicity function u(c, d′) satisfies limc→0 uc = +∞.

Secondly, Assumption 2 is not necessary for Clausen and Strub’s (2012) differentia-
bility result, but is exploited by the algorithm in this paper. It implies that any non-
concavity with respect to a′ of the maximand in equation (10) is due to the continuation
value Ṽ (a′, d′; y).

The Bellman equation (15) for the d′-contingent value functions can also be written
in the alternative state space (d′; z, y) as

V d′(z, y) = max
a′∈[0,z]

u(z − a′, d′) + Ṽ (a′, d′; y). (16)

In fact, given that Ω(·, d′; a, d, y) = [0, z(d′; a, d, y)], it is easily verified that the value
functions for problems (15) and (16) satisfy

Vd′(a, d, y) = V d′(z(d′; a, d, y), y). (17)

The alternative representation (16) in terms of cash at hand is crucial to the EGM
algorithm and will be exploited in what follows.

Finally, the following Proposition establishes that the d′-contingent optimal saving
correspondence a′d′(z, y) is increasing in z in the following sense.

Proposition 1. Let zH > zL. For any a′L ∈ a′d
′(zL, y) and a′H ∈ a′d

′(zH , y), a′H ≥ a′L
holds. Furthermore, a′H > a′L if a′H ∈ (0, z).

Proof. See Appendix.

The result is standard for problems in which the choice set Ω(·, ·; a, d, y) is convex and
the saving correspondence a′d′(z, y) is a function; i.e. the set a′d′(z, y) is a singleton for
all (d′; z, y). Proposition 1, though, generalizes the result to the present setup in which
the non-convexity of Ω(·, ·; a, d, y) may imply that the set a′d′(z, y) is not a singleton for
all (d′; z, y), in which case the policy correspondence is not a function. Proposition 1
exploits a monotone-comparative-statics result to establish that the correspondence is
still strictly increasing in z off corners which implies that its inverse with respect to z is
a function. The saving correspondence in figure 2 provides a graphical illustration of the
property implied by Proposition 1.

3 The solution algorithm
To simplify the exposition of the algorithm, we assume the following.

Assumption 4. The parametric restriction γ = r−1 and ξ = (1 + r)−1 holds.
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The assumption implies that the borrowing constraint a′ ≥ 0 is the natural borrowing
constraint and therefore never binds. We relax this in Section 4.1.

It also follows from Proposition 1 that one can exploit the monotonicity of the d′-
contingent saving correspondence a′d′(z, y) to accelerate the computation of the solution.
It turns out that monotonicity is even more powerful when the value function has down-
ward kinks. A refined version of the algorithm exploiting monotonicity is described in
Section 4.2.

3.1 Relationship to the standard endogenous grid method
The result in Proposition 1 is at the heart of Carroll’s (2006) EGM. It implies that in
solving the first-order condition (13) for a′d′(z, y) as a function of z for given (d′; y) ∈ D×Y
one can, interchangeably, proceed in one of two ways.

The usual way is to construct an ordered grid Gz = {zi}mi=1 for total initial resources
z and solve the Euler equation (13) forward for the associated a′, to obtain the policy
correspondence a′d′(zi, y), on the chosen grid Gz.

Carroll’s (2006) EGM instead defines a, fixed, ordered grid Ga′ = {a′i}mi=1 for end-of-
period assets and solves the Euler equation (13) backward for the value of total resources
ẑi(d′; y) for each a′i ∈ Ga′ . Therefore, the EGM algorithm returns the policy correspon-
dence a′d′(ẑi(d′; y), y) on the, endogenously-determined, grid Gẑ(d′; y) = {zi(d′; y)}mi=1
implied by a′d′(ẑi(d′; y), y) = a′i for all a′i ∈ G′a.

The disadvantage of standard, forward-solving methods is that the Euler equation
is non-linear in a′. Solving for a′ involves evaluating the Euler equation multiple times
for each grid point zi. Conversely, the computational cost of solving the Euler equation
backward for z given a′ is usually very low. This can be easily seen in the case in which
the felicity function is separable in c and d′; e.g., it satisfies u(c, d′) = θ log(c) + (1 −
θ) log(g(d′)). In such a case, the Euler equation can be written as z − a′ = θ/Ṽa(a′, d′; y),
which is linear in z.12

Given, the policy correspondence a′d′(ẑi(d′; y), y), on the endogenous grid Gẑ(d′; y),
one can construct an interpolating function and evaluate it at any arbitrary point for
total resources z to obtain the associated value a′d′(z, y). Conversely, standard, forward-
solving methods solve directly for the policy correspondence at any chosen point for z.
Therefore, EGM trades off the cost of evaluating an interpolating function against the
cost of solving a non-linear equation, a very advantageous trade-off.

If the maximand in equation (15) is concave and differentiable with respect to a′,
maximization of (15) is equivalent to solving for the unique zero of equation (13) and
one can use the standard EGM to solve for the saving function. This is not the case
if the maximand in equation (15) is either non-concave or non-differentiable in a′. As
discussed in Section 2.2, though, the first-order condition (13) is still necessary for an
interior maximum, for the class of problems satisfying Assumptions 1 to 3. Therefore,
EGM is still useful to locate an interior local maximum. Since, given the non-concavity
of the maximand in equation (15), a local maximum is not necessarily a global one, the

12Even if uc(c, d′) does not have a closed-form inverse with respect to c, given a′ some variant of
Newton method converges to the unique solution for z at a quadratic (or close to quadratic) rate. A
similar method cannot be applied to solve for a′ if, as in the present model, Ṽa(a′, d′; y) is discontinuous,
let alone non-differentiable, with respect to a′.
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Figure 1: Illustrating the algorithm.
uc(·, ·), Ṽa(·, ·, ·)

O

vmax

vmin

uc(ẑ5 − a′, d′)

uc(ẑ8 − a′, d′)

Ṽa(a
′, d′, y)

a′1 a
′
2 a
′
3 a
′
4 a
′
5 a
′
6 a
′
7 a
′
8 a
′
9 a
′
10a
′
11a
′
12 . . .

generalized algorithm in this paper modifies the standard EGM step in the following way.
First, it partitions the set of grid points for future assets Ga′ into the region in which
the continuation value Ṽ (a′, d′, y) is non-concave (non-concave region) in a′ and its set
complement. Secondly, for all a′i in the non-concave region, the algorithm supplements
the EGM step with a standard discretized-VFI maximization step. Since the non-concave
region is a subset of the choice set Ga′ , identifying the non-concave region allows to confine
the, costly, application of the discretized-VFI step to such region rather than the whole
of Ga′ .

The next two subsections describe respectively how to identify the non-concave region
and the details of the modified EGM algorithm.

3.2 Identifying the non-concave region
Understanding how the algorithm delimits the region over which Ṽ (a′, d′, y) is non-
concave in a′ (non-concave region) is easier with the help of Figure 1 which draws
the marginal utility of present consumption and of future assets as functions of a′. The
thick non-monotonic and discontinuous curve plots the marginal utility of future assets
Ṽa(a′, d′, y), for given current discrete durable choice d′ and income realization y. The
curve is discontinuous at those values of a′ for which some future discrete choice changes
along some continuation history. The thinner upward sloping curve is the marginal utility
of present consumption for a given value of total resources z and current durable choice
d′. A point where the two curves intersect is a zero of the first-order condition (13).

In terms of Figure 1, for each abscissa a′i ∈ Ga′ EGM finds the value of total resources
zi for which an upward sloping curve intersects the thick Ṽa(a′, d′, y) curve at a′ = a′i;
namely for which a′i is a zero of the first-order condition (13). The first-order condition is
sufficient for a′i to be a global maximum if a′i is the unique intersection between the upward
sloping curve uc(zi − a′, d′) through it and the curve Ṽa(a′, d′, y). A sufficient condition
for the intersection at a′i to be unique on some subset SG ⊆ Ga′ is that Ṽa(a′j, d′, y) >
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Ṽa(a′i, d′, y) for all a′j < a′i ∈ SG and Ṽa(a′j, d′, y) < Ṽa(a′i, d′, y) for all a′j > a′i ∈ SG. In
Figure 1, this is the case in the regions where Ṽa(a′, d′, y) is above vmax and below vmin,
or equivalently for any value of assets outside the set Gnc

a′ (d′; y) = {a′2, . . . , a′11}.13 Note,
that as Ṽa(a′, d′, y) is a function of (d′; y) so is the non-concave region Gnc

a′ (d′; y).
Assuming the function Ṽa(a′, d′, y) is known, the bounds vmin and vmax can be com-

puted, for each given (d′; y), as respectively the lowest value of Ṽa(a′i, d′, y) and the highest
value of Ṽa(a′i+1, d

′, y) for all i such that Ṽa(a′i+1, d
′, y) > Ṽa(a′i, d′, y). Given vmin and vmax,

one can compute i—the largest i such that Ṽa(a′i, d′, y) > vmax—and ī—the smallest i
such that Ṽa(a′i, d′, y) < vmin.

By construction, the first-order condition (13) is necessary and sufficient for a max-
imum for a′ ≤ a′i and a′ ≥ a′ī. The first-order condition is only necessary though for
a′i ∈ Gnc

a′ (d′; y) = {a′i+1, . . . , a
′
ī−1}.

3.3 The algorithm
Given (d′; y) and the associated non-concave region Gnc

a′ (d′; y) identified in the previous
section, the generalized EGM algorithm proceeds in the following way. For each a′i ∈ Ga′

it applies the standard EGM algorithm and uses equation (13) to solve for ẑi(d′; y). If a′i
lies outside the non-concave region—e.g., a′i = a′1 in Figure 1—the algorithm stores the
pair {ẑi(d′; y), a′i} and moves to the next point in Ga′ . If instead, as is the case for a′4 in
Figure 1, a′i belongs to the non-concave region, the algorithm verifies whether a′i is also
a global maximum for z = ẑi(d′; y). To do so, for given ẑi(d′; y), the algorithm constructs
the discretized Bellman maximand for all a′j in the non-concave region Gnc

a′ (d′; y) and
finds the maximum of the discretized problem

a′g = arg max
a′∈Gnc

a′ (d′;y)
u(ẑi(d′; y)− a′, d′) + Ṽ (a′, d′, y). (18)

If ag = ai, ai is both a local and global maximum given ẑi(d′; y) and, again, the pair
{ẑi(d′; y), a′i} is stored. If instead a′g is different from a′i the algorithm discards point a′i
and moves to the next grid point a′i+1. Evaluating all grid points a′i ∈ Ga′ yields the
saving correspondence a′d′(ẑil(d′; y), y) = a′il on the endogenous grid points, where il,
l = 1, 2, . . . indexes the—ordered—subset M(d′; y) ⊆ Ga′ of grid points a′i that have not
been discarded. Replacing the set of pairs {ẑil(d′; y), a′il} in equation (16) one obtains the
d′-contingent value functions V d′(ẑil(d′; y), y) on the endogenous grid points ẑil(d′; y).

Before presenting the pseudo-code for the complete algorithm, it is useful to tie a few
loose ends. First, one has to select an ordered grid Ga′ for next-period’s assets a′. Second,
it is useful to store in memory the grid for total resource Gz(d′; d, y) = {zi(d′; d, y)}mi=1
implied by z(d′; a, d, y) defined in equation (6), for all a ∈ Ga, as a function of (d′; d, y) ∈
D×D× Y. Note that Ga is the grid for current assets that is used in the VFI step. It is
convenient to choose the same grid as the grid for next period’s assetsGa′ , keeping in mind,
though, that the two are conceptually different. Third, since the function Ṽ (a′, d′, y) is
unknown it has to be found by repeated backward iteration of the system formed by
equations (11), (14), (17) and (16) starting from equation (16) and some initial guess

13The fact that Ṽa(a′, d′, y) > vmax for a′ low enough follows from Assumption 4, maintained in this
section, that implies that the borrowing constraint is always slack. This not true in general. Section 4.1
discusses how the algorithm needs to be modified when it is not.
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Ṽ (a′, d′, y)0. The initial choice of guess Ṽ (a′, d′, y)0 has to be continuous and increasing
in a′. Its wealth derivative Ṽa(a′, d′, y)0 can be computed by finite differences.

At all subsequent iterations n > 0, the wealth derivative Ṽa(a′, d′, y)n at the points
of the grid Ga′ , can be approximated either by taking finite differences of Ṽ (a′, d′, y)n or
using the envelope condition14

Ṽa(a′, d′, y)n+1 = (1 + r)Euc(c(a′, d′, y′)n, d′(a′, d′, y′)n) (19)

where c(a, d, y)n = z − a′d′(z, y) with z = z(d′; a, d, y) and d′ = d′(a, d, y)n.
The corresponding pseudo code is the following.

1. Initialize the iteration index n = 0. Guess a function Ṽ (a′, d′, y)0 and compute its
wealth derivative Ṽa(a′, d′, y)0.

2. For all (d′; y) apply the modified EGM step as follows:

2.1. Solve for the bounds i, ī of the non-concave region Gnc
a′ (d′; y) as derived in

Section 3.2.
2.2. Compute the endogenously-determined level of total resources ẑi(d′; y) that

solves equation (13) for all a′i ∈ Ga′ .

2.3. For all i < i < ī, find the solution a′g to the discretized saving problem using
(18) evaluated at z = ẑi(d′; y). If a′g 6= a′i, discard the pair {ẑi(d′; y), a′i}.

2.4. The set of pairs {ẑil(d′; y), a′il} that have not been discarded is the policy
function a′d

′(ẑil(d′; y), y) on the endogenous grid points. Use each pair to
replace for z and a′ in equation (14) to obtain the associated d′-contingent
value functions V d′(ẑil(d′; y), y).

2.5. The d′-contingent value functions V d′(ẑil(d′; y), y) need to be evaluated on
a common grid in order to solve for the optimal discrete choice. There-
fore, interpolate a′d′(ẑil(d′; y), y) and V d′(ẑil(d′; y), y) on the grid Gz(d′; d, y)
to obtain Vd′(a, d, y) = V d′(z(d′; a, d, y), y) and a′d′(z(d′; a, d, y), y) on the grid
Ga′ ×D × Y.

3. For all (a, d, y) ∈ Ga ×D × Y compute the optimal discrete choice d′(a, d, y)n, and
the value function V(a, d, y)n+1 by solving (14).

4. Compute Ṽ (a, d, y)n+1 using equation (11).

5. If ||Ṽ (a, d, y)n+1− Ṽ (a, d, y)n||∞ > 10−5, with || · ||∞ the sup norm over Ga×D×Y,
use the envelope condition (19) to obtain Ṽa(a, d, y)n+1 and start a new iteration.

It should be clear from the above description that the application of the global maxi-
mization step to the discretized problem is used only to verify whether a local extremum
is a global maximum. It is not used to actually solve for a point on the d′-contingent
saving correspondence. If the solution a′g differs from the original point a′i, the algorithm

14In our numerical experiments using the envelope condition results in a slight improvement in accuracy
relative to finite differences.
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Figure 2: The saving correspondence.
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does not replace a′i with the global maximum a′g for the discretized problem; it just dis-
cards a′i. If a′g > a′i the same procedure will be repeated when a′g is reached and a′g will
be stored only if it is a fixed-point of the procedure. For any point a′i belonging to the
range of the saving correspondence the solution is very accurate because the algorithm
determines the value of total resources for which a given grid point a′i for future assets
solves the first-order condition (13) exactly. The imprecise, discretized, global maximiza-
tion step is used only to confirm that the candidate local extremum is indeed a global
maximum or to discard it.

On the other hand, as other methods that solve a discretized version of the true
problem, the maximization step in equation (18) may incorrectly identify a pair (ẑi, a′i)
as an optimal one when a′i does not belong to the range of the saving correspondence
for the continuous problem. For example, suppose that the algorithm is evaluating point
a′8 in Figure 1 and that a′8 does not belong to the saving correspondence for the true—
continuous—problem; namely the global maximum associated with ẑ8 is a point in the
interval (a′10, a

′
11). Yet, if the grid is not fine enough—i.e., if the two grid points a′10 and

a′11 in Figure 1 are not close enough—the algorithm may wrongly accept the pair (ẑ8, a
′
8)

as optimal. It is therefore important that the grid Ga′ is sufficiently fine to minimize
this type of errors. Once again, though, note that this is a problem that applies to all
methods that discretize continuous variables; i.e. all methods commonly used to solve
non-concave problems (see footnote 3).

There is also a second reason, having to do with the discontinuity of the policy corre-
spondence, for which the asset grid has to be sufficiently fine. To see this consider again
the policy correspondence plotted in Figure 2, where the discontinuous curve represents
the true solution which the numerical algorithm has recovered on the discrete grid on the
vertical axis. The algorithm discards points {a′6, . . . , a′10} and the associated values of
cash at hand that solve the first-order condition. Compared to an algorithm that solves
forward for a′ given some exogenous grid for a, and hence for z, the modified EGM loses
five interpolating nodes. The loss of some of those nodes, namely those for which ẑi lies
outside the interval (ẑ5, ẑ11) in Figure 2—e.g., ẑ9 > ẑ11 from Figure 1—is not very costly
as the value of the policy at such points can be recovered by interpolation, provided
the the grid is sufficiently fine outside (ẑ5, ẑ11). On the other hand, one would want a
high accuracy in bracketing the set of values of a′ that do not belong to the policy cor-
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Figure 3: Occasionally-binding borrowing constraint.
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respondence. Since the algorithm identifies the points in the grid Ga′ that bound such
a set—namely a′6 and a′10— in Figure 2, it provides information on where to efficiently
place the extra grid points—namely in the intervals (a′5, a′6) and (a′10, a

′
11).15

4 Generalizations and refinements

4.1 Borrowing constraints
Up to now I have maintained, only for expositional reasons, the assumption that the
borrowing constraint is never binding. Carroll (2006) though shows that EGM can ac-
commodate occasionally binding borrowing constraints extremely effectively. I now relax
the assumption that the borrowing constraint is never binding, by assuming the following.

Assumption 5. The parametric restrictions γ < r−1 or ξ < (1 + r)−1 hold.

The assumption implies that the expected marginal utility of future consumption is
finite at the borrowing constraint a′1 = 0 and the constraint binds with positive proba-
bility. Figure 3, effectively the counterpart of Figure 1, illustrates how EGM deals with
the borrowing constraint.

For given (d′; y) EGM calculates the value of total resources ẑ1(d′; y) for which the first-
order condition (13) is satisfied as an equality. The are two possible cases to distinguish.

In the first case, a′1 = 0 is both a local and global maximum given z = ẑ1(d′; y),
namely a′d′(ẑ1(d′; y), y) = a′1 = 0 in point 2.4 in the pseudo-code in Section 3.3. Therefore
ẑ1(d′; y) is the first interpolation node for the d′-contingent saving and value functions.
Since a′d′(ẑ1(d′; y), y) satisfies the first-order condition, the borrowing constraint is on
the verge of being binding at ẑ1(d′; y) and, from monotonicity, the constraint is strictly
binding for any z < ẑ1(d′; y).

15I am indebted to Victor Rios-Rull for this insight. The refinement is not implement in the code to
avoid additional complexity and given the relatively low cost of having a sufficiently fine grid over the
entire range.
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The value of the d′-contingent saving correspondence for all points for which the
borrowing constraint is binding—namely those for which z ≤ ẑ1(d′; y) is just a′d′(z, y) = 0.

Replacing in (10), the associated value of the d′-contingent value function can be
recovered as

V d′(z, y) = u(z, d′) + Ṽ (0, d′, y).16 (20)
As first pointed out by Carroll (2006), the fact that EGM returns the exact value

of total resources for which the borrowing constraint is weakly binding implies that the
solution is analytic everywhere to the left of the first endogenous grid point. For the same
reason, in the presence of occasionally-binding borrowing constraints, the accuracy of the
model simulation is improved by using the endogenous grid.

The previous case is the only one that applies to concave problems. A second possi-
bility exists for non-concave problems, though.

Consider the case in which a′1 = 0 is not a global maximum for z = ẑ1(d′; y); i.e.,
the solution to equation (18) for z = ẑ1(d′; y) is some a′g > 0. Therefore, the borrowing
constraint is not binding for z = ẑ1(d′; y). In fact, the EGM steps 2.1-2.4 in Section 3.3
would return an interpolating function whose first point is a′d′(ẑi1(d′; y), y) = a′i1 > 0;
e.g. a′i1 = a′5 in Figure 3. Therefore, one cannot conclude that the household chooses to
be borrowing constrained for z in a left neighborhood of ẑi1(d′; y). The EGM algorithm
no longer necessarily determines the lower bound on total resources below which the
household is borrowing constrained.

Yet, because the d′-contingent saving correspondence is monotonic such a lower bound
exists. An approximation to it can be recovered by finding the value of ẑi0(d′; y) that
solves the following equation

u(ẑi0(d′; y), d′) + Ṽ (0, d′, y) = u(ẑi0(d′; y)− a′i1 , d
′) + Ṽ (a′i1 , d

′, y), (21)

where a′i1 = a′d
′(ẑi1(d′; y), y).

The solution ẑi0(d′; y) is the value of total resources for which the global optimum
switches from a′1 = 0 to a′i1 . Adding the point (ẑi0 , 0) as the first point of the vector
of interpolating nodes for the d′-contingent saving correspondence, and the associated
value V d′(ẑi0(d′; y), y) = u(zi0(d′; y), d′) + Ṽ (0, d′, y), allows to use the same interpolation
procedure as in the first case considered.

4.2 Monotonicity
Proposition 1 implies that the d′-contingent saving correspondence a′d′(z, y) is increasing
in z. As for concave problems, monotonicity can be usefully exploited to economize on the
number of comparisons in the global, discretized-VFI maximization step 2.3 in Section 3.3.
Since, as discussed in Section 3.3 the global maximization step applies only in the non-
concave region Gnc

a′ (d′; y) it is only in such region that one needs to exploit monotonicity.
While the optimal saving correspondence is increasing in z (see, e.g., Figure 2) the

mapping of candidate points {ẑi(d′, y), a′i}mi=1 that satisfy the Euler equation (13) is not
necessarily so in the non-concave region, where the marginal utility of future wealth is
not monotonic. To see this, consider again Figure 3, where the thick broken line plots

16Alternatively , V d′(z, y) = u(z, d′) − u(ẑ1(d′; y), d′) + V d′(ẑ1(d′; y), y), as the continuation value
Ṽ (0, d′, y) in equation (16) is the same for all z ≤ ẑ1(d′; y).
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the expected marginal utility Ṽa(a′, d′, y) and the upward sloping line plots the marginal
utility of current consumption, both as a function of a′. Since higher values of z shift the
latter curve down, it follows that ẑ5(d′, y) < ẑ1(d′, y) in Figure 3, although a′5 > a′1.

Note that the current marginal utility locus through a point a′i partitions the non-
concave region Gnc

a′ (d′; y) into the set of points associated with ẑj(d′, y) > ẑi(d′, y) and
lying to the right of the curve and the complementary set of points to the left of the
curve for which ẑj(d′, y) < ẑi(d′, y). To exploit monotonicity, it is convenient to sort
the set of points {ẑi(d′, y), a′i}mi=1 in increasing order of z and apply the discretized-VFI
maximization step 2.3 in Section 3.3 to the permuted sequence in the sequence’s order.
Let {ẑoi(d′, y), a′oi}mi=1, denote the reordered set of pairs where oi indexes the permutation
of the sequence i = 1, · · · ,m associated with the reordering. In terms of Figure 3, we
have o1 = 5, o2 = 8, o3 = 1, . . .

Suppose that one is considering whether some point a′oi—e.g. point a′o3 = a′1 in Figure
3—is a global maximum for z = ẑoi(d′, y). Finding the global maximum associated with
z = ẑoi(d′, y) for the “true” problem would require comparing the value of the maximand
in equation (18) at the three intersections of the upward-sloping curve through a′1 and
the thick downward-sloping curve. In fact, though, the value of the maximand can be
computed only at the points of the discrete grid. Therefore, the value of the maximand
at a′1 has to be compared to its value at the right and left bracketing points of the two
intersections to the north-east.

Consider first the right bracketing points; i.e. points such ẑoj(d′, y) > ẑoi(d′, y). By
construction they are points a′oj with j > i. Bracketing the intersections implies locating
points a′oj lying on upward-sloping curves close to the upward-sloping curve through
ẑoi(d′, y); i.e., points associated with values of cash at hand ẑoj(d′, y) close to ẑoi(d′, y). It
follows from the ordering of points that their index oj is relatively close to oi. Therefore,
one needs to compare a′oi only to a small number of points to its right.

One can of course conceive of pathological cases in which considering a (too) small
number of points may not bracket all the intersections; e.g. a grid similar to that in
Figure 3 that places lots of points close to the first two intersections, but such that the
right bracketing point for the third intersection— point a′9—is far from it. Even that may
not be problematic though. The very fact that a′9 is far from the intersection is likely
to imply that it cannot improve upon a′oi even if the global maximum associated with
z = ẑoi(d′, y) in the “true,” continuous problem is the point associated with the highest
intersection.17,18

Consider now the left bracketing points a′oj with j < i. There are two cases to distin-
guish. In the first case, all points a′oj, j < i, have been discarded. Since, they have been
considered sequentially starting from the first one, they must have been improved upon
by points bracketing the curve through them from the right. It follows, by induction, that
all of them are improved upon by aoi and, by monotonicity, cannot improve upon aoi for
z = ẑoi(d′, y). Therefore, one does not need to consider any a′oj with j < i if all of them
have been discarded. Suppose, instead, some a′oj, j < i, has already been established as
a global maximum. Among these, let a′ok be the point such that ẑok(d′, y) is closest to

17This is another aspect of the need for a fine enough grid discussed in Section 3.3.
18In the code used for the numerical part, we compare each candidate point to the closest ten to its

right. Even reducing this number down to four produced the same results as applying the discretized
VFI step to the whole non-concave region.
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ẑoi(d′, y); e.g a′ok = a′5 in Figure 3. A first, and standard19, implication of monotonicity
is that in solving equation (18) for z = ẑoi(d′, y) it is not necessary to compare a′oi to any
point other than a′ok. All points a′oj with j < k have either been discarded or are optima
for ẑoj(d′, y) < ẑok(d′, y). Either way they cannot improve upon a′ok for z > zok(d′, y).

A final implication of monotonicity is that if a point a′ok—e.g. a′ok = a′5— has been
established as a global maximum, one can discard, without even solving (18), all points
a′oi < a′ok—e.g. points a′1 to a′4 in Figure 3—since, by construction, zoi(d′, y) > ẑok(d′, y).

5 Results

5.1 Parameterization
The parameterization follows Bajari et al. (2009) along a number of dimensions. The
chosen felicity function is

u(c, d′) = 1
τ

log(θcτ + (1− θ)κ(d′ + ι)τ ), (22)

where ι is a number small enough to be irrelevant for our quantitative exercises, but
makes the utility function finite for d′ = 0.20 As in Bajari et al. (2009), the durable flow
equivalent is κ = 0.075, the non-durable share θ = 0.77 and the fractions of human and
durables wealth that can be collateralized are respectively γ = 0 and ξ = 0.2. Note, that
the latter two parameter values satisfy Assumption 5 and imply that the borrowing limit
binds with positive probability. The intermediation fee is set to φ = 0.06.

The income process is a discrete approximation to a log-normal process with a persis-
tent and transitory components as in Storesletten, Telmer and Yaron’s (2000)21. Namely,

log yt = zt + εt

zt = ρzt−1 + ηt,

with εt, ηt distributed independently according to N(0, σε), N(0, ση).
The Markov chain approximation to the process follows Tauchen (1986). The number

of grid points for both the transitory and persistent components is 7 which implies that
y can take 49 discrete states.

I choose seven uniformly-spaced points for the durable choice stock and a double
exponential grid for assets a. The upper bounds on a and d equal approximately 25 and
10 times unconditional average income.22 These values are large enough to ensure: (1)
that the upper bound of the stationary distribution for a is below the highest grid point,
and (2) that the upper bound on d does not constrain the durable choice.

19This is the usual way monotonicity is used to speed up the solution of concave problems.
20The, fully equivalent, alternative of choosing a strictly positive lower bound for the discrete choice

set D would have implied slightly less neat parametric restrictions in Assumption 4.
21The estimates are from row D. in their Table 1. The permanent, individual-specific random effect is

not included as it would play no role in the present set up.
22It follows from equation (5) and the zero lower bound on the durable choice that the upper bound

on non-normalized wealth w also equals 25 times unconditional average income.
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Table 1: Chosen parameters.
Parameter β r κ φ ξ σy ρ ση

Value 0.93 0.06 0.075 0.06 0.20 0.063 0.977 0.024

Finally, the interest rate is set to r = 0.06, roughly in line with average real mortgage
rates, and the discount rate is set to β = 0.93 to ensure boundedness of the wealth
distribution. The chosen values for parameters are collected in Table 1.

The parameter τ governing the elasticity of substitution takes different values in the
simulations. In most of the simulations it equals zero, which implies the Cobb-Douglas
specification

u(c, d′) = θ log(c) + (1− θ) log(κ(d′ + ι)),

used in Fernández-Villaverde and Krueger (2010). Under this specification the first-order
condition (13) is linear in total resources as discussed in Section 3. The parameter ι is
set to 0.01.

I also experiment with τ = 0.2435, as estimated in Bajari et al. (2009), to assess
how the speed of the algorithm is affected by the non-linearity in total resources of the
first-order condition.

5.2 Numerical results
VFI is the standard method of choice for non-concave and/or non-
differentiable problems. It is, therefore, natural to compare the accuracy and speed
of the modified EGM algorithm to those of VFI. Though, most papers solving problems
in this class discretize all continuous state variables, there is just one such variable in
the above model. For this reason, it seems appropriate to compare the modified EGM
algorithm to a version on VFI that does not discretize the continuous variable. A natu-
ral choice is linearly-interpolated VFI which deals with the non-concavity by bracketing
the maximum over the discrete grid and then switching to linear interpolation on the
bracketing interval.23

There are two possible ways to generate the grid for total resources z for the VFI
algorithm. The first, “brute force” approach is to solve directly problem (15) at all points
(d′; a, d, y) ∈ D × Ga × D × Y. The alternative is to choose an exogenous grid for total
resources Gz and solve the intermediate problem (16) for all points (d′; z, y) ∈ Gz×D×Y,
using interpolation to recover Vd′(a, d, y) on the grid D × Ga × D × Y. In fact, the
second approach solves the same problem as EGM, with the only difference that the grid
Gz is exogenous. If NI denotes the cardinality of a set I, the first method solves the
maximization problem at NGa×N2

D×NY against NGz×ND×NY points. That is the two
choices, denoted respectively VFI1 AND VFI2 in what follows, imply a trade-off between
accuracy and speed. For this reason, I report results for both of them. The sizes of the
two grids Ga and Gz are chosen to be the same for ease of comparison,

23This is also the VFI algorithm used in Barillas and Fernández-Villaverde (2007).
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Finally, since the algorithm in this paper exploits the monotonicity of the policy
correspondence, monotonicity is also exploited when solving the model using VFI, so as
not to bias the comparison between EGM and VFI.

To compare the accuracy of the two algorithms I compute Euler equation errors
following Judd (1992). If s = (a, d, y) denotes the state vector, the Euler equation

uc[c(s), d′(s)] = β(1 + r)Euc[c(a′(s), d′(s), y′), d′′(a′(s), d′(s), y′)] (23)

should hold exactly for the true policy correspondences off corners. Given that the
computed policy correspondences are only approximations, equation (23) does not hold
exactly when evaluated with the computed policies.

Let c∗(s) denote the solution to

uc[c∗(s), d̄′(s)] = β(1 + r)Euc[c̄(ā′(s), d̄′(s), y′), d̄′(ā′(s), d̄′(s), y′)], (24)

where bars over variables denote the approximate policy correspondences. The (absolute)
Euler equation error measured in units of current consumption can then be written as

EE(s) =
∣∣∣∣∣1− c∗(s)

c̄(s)

∣∣∣∣∣ (25)

for any point of the state space s.
An Euler error EE(s) equal to one per cent means that the agent is making a mistake

of one cent for each dollar spent. Following Judd, I report the base 10 logarithm of the
Euler error. Therefore, a one per cent error in (25) corresponds to an Euler error of -2.

As standard in the literature, I report both the maximum and the average of the Euler
errors along a simulated path. To construct the two measures, I draw a 50,000-period
income history. This together with the policy correspondences generates a history for
the whole state vector. Since the Euler equation does not have to be satisfied at the
borrowing constraint, the maximum and average Euler errors are computed over the set
of points in the state space where the borrowing constraint is slack.

The chosen initial conditions are a0 = d0 = 0 and the unconditional average of
the income process. All the computations were carried out on a single core of a Xeon
X5570 processor. The programs were written in Fortran 95. The code is available at
http://webspace.qmul.ac.uk/gfella/research/research.html for download.

The model is first simulated with τ = 0 and a grid of 200, 400 and 1000 for the
continuous state variable a. Figure 4 reports execution time, the two error metrics and
plots the size distribution and the average of the Euler errors over the simulated history,
for each of the nine combination of the asset grid dimensions and solution methods.

In terms of computational time, EGM is from 2.5 to 6.5 faster, depending on the grid
size, than VFI2 and from 10 to 18 times faster than VFI1.24 This is very encouraging and
not completely expected. The EGM algorithm has to use a global comparison method
over the subset of the state space where the problem is non-concave. Over such a subset
the method has no computational advantage compared to VFI2. It turns out that, when
the policy correspondence is discontinuous, applying monotonicity to the Euler equation,

24All three methods converge in the same number of iterations, 117 when the asset grid has 1000
points.
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Figure 4: Accuracy and speed of the algorithms for various asset-grid sizes.a
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aNote: Avg. and Max are respectively the average and maximum Euler error, off corners, on a
stochastic simulation of 50,000 observations. CPU is CPU time in seconds.

as discussed in Section 4.2, allows to discard a larger number of candidate points than in
the standard application of monotonicity in VFI.

In terms of accuracy, EGM produces an average approximation error of an order
between about −5 and −7, two to three orders of magnitude smaller than either version
of VFI.

Yet, comparing the maximum Euler errors along the simulated path does not show
a clear superiority of EGM. In particular, on all grid sizes VFI1 produces a smaller
maximum error.

The reason why EGM is not necessarily more accurate according to this last metric
is apparent once one realizes that the true consumption and saving correspondences are
discontinuous and that they are approximated by interpolation. As long as the true policy
correspondences jump between two interpolating nodes, the Euler equation evaluated at
their approximations may be significantly violated at any point in between. This is true
independently from the algorithm used. Therefore, the last summary statistics may not
be very informative about the upper tail of the error size distribution, in the presence of
discontinuities in the policy correspondences. This can be better understood by looking
at the histograms of the size distribution of the Euler errors in Figure 4. The histograms
are constructed by dividing a, common, error-size range into bins of size 0.2. Note that
the number of error realizations falling into each bin is plotted on a logarithmic vertical
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Table 2: CPU time and accuracy for τ = .2435 (1000 asset grid points).

Model CPU Average Maximum # of Euler errors > −3
(s) . Euler error . Euler error (%��)

σ = 1, τ = .2435
EGM 131 -6.98 -4.29 0
VFI1 3589 -3.83 -2.97 0
VFI2 861 -3.88 -2.94 6

scale, to better visualize what happens at the upper bound of the error distribution. The
fact that the total histogram area may appear to differ across sub-figures, despite the
number of errors being about the same—around 40,000 errors off-corners—in all the nine
cases, is an artifact of the logarithmic scale.

Consider the largest difference in the maximum Euler error between EGM and VFI1
which obtains in the case of a 400-point asset grid case. Looking at the whole error
distribution reveals that it is only one error out of 40,000 where EGM underperforms
VFI1. The same is true for the 200-point grid. Apart from this error, the EGM error
distribution is first-order stochastically dominated by the error distributions of VFI1 and
VFI2. Not only this is true for the same asset-grid size. The error distribution for EGM
with 200 grid points compares extremely favorably with those for VFI1 and VFI2 with
1000 points, with the exception of less than 10 errors out of 40,000. This against a
difference in computational time of 38 and 100 times.

Finally, Table 2 conducts the same analysis for τ = 0.2435, the value estimated in
Bajari et al. (2009). When τ differs from zero the consumption aggregator is no longer a
power function. Therefore, the Euler equation (13) is non-linear in total resources z, as
the marginal utility of consumption has no analytic inverse. While non-linear, the Euler
equation is twice differentiable with respect to total resources z—but not with respect to
a′—and can be solved for z using Newton method.

The chosen size of the asset grid is 1000 points to minimize the impact of overheads.
Table 2 reports computation time and the maximum and average Euler error as in Figure
4. It also reports the number of Euler errors (per 10,000 observations) exceeding -3, as a
way of summarizing, the right tail of error size distribution.

The results in Table 2 make clear that, while, as expected, the change in τ increases
significantly computational time for all methods, it leaves their performance, as measured
by the average error and the number of errors exceeding -3, virtually unaffected. If
anything, the relative advantage of EGM in terms of computational time increases, in
particular relative to VFI1.

Finally, though the generalized EGM algorithm yields significant benefits, relative to
VFI, in terms of accuracy and speed, one may wonder about its implementation costs.
A standard, although, imperfect measure of implementation complexity is the number of
lines of source code. The natural comparison is against VFI2 which entails the same state
space. I report results just for the core code solving the decision problems, all the rest
of the code being virtually identical between the two algorithms. The code for solving
the decision problem in VFI2 contains 247 lines. The counterpart for EGM is 269 lines
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Table 3: Comparison of solution methods with two continuous choices.
Model CPU Average Maximum # of Euler errors > −3

(s) Euler error Euler error (%��)

EGM 341 -5.41 -1.80 8
VFI1 7190 -3.14 -1.81 4640
VFI2 860 -3.20 -1.56 3930
Discretized VFI1 3046 -2.54 -1.78 8629
Discretized VFI2 743 -2.70 -1.68 7939

of original code and 197 lines of, off-the-shelf, Newton solver and sorting subroutine.

5.3 Continuous durable choice
This section evaluates the performance of the generalized EGM algorithm when applied to
non-concave problems with more than one continuous choice. Instances of these problems
are studied in Luengo-Prado (2006), Bloom (2009) and Bajari et al. (2009). Typically,
these problems are solved by discretizing all state variables and applying VFI to the
discretized problem.

Discretization requires a fine enough grid to ensure a reasonable accuracy and runs
therefore quickly into the curse of dimensionality. The generalized EGM algorithm in
this paper does away with discretization of one of the continuous variables, requiring a
coarser grid for that variable, for the same accuracy.

In what follows, the durable choice is assumed to be continuous, but the fixed-
adjustment-cost component still implies that the problem is non-concave.

The EGM algorithm is applied by discretizing the durable choice alone. Compared
to Section 5.2 the difference is that now the size of the grid for the durable choice is
relative large—50 rather than 7 points. A grid of 200 points for the continuous asset
variable is chosen to facilitate the comparison with Section 5.2. For the same reason, the
parameterization is also unchanged.

As in Section 5.2, the performance of the EGM algorithm is compared to that of
the two versions of VFI that treat the asset variable as continuous. In addition, EGM
is also compared to their discretized-state-space counterparts that constitute the typical
solution method for this class of problems.

Table 3 reports computation time and the usual measures of accuracy. The first three
lines of the table can be understood by comparing them to the 200-grid column in Figure
4. With only 200 asset grid points, EGM does significantly better than both version of
VFI also in terms of number of errors exceeding -3. The discrete-state-space versions of
VFI perform even worse both in terms of average Euler error and of the number of errors
in excess of -3. Somewhat surprisingly, both versions of VFI2 are more accurate than
their VFI1 counterparts in terms of the number of Euler errors exceeding -3.
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6 Conclusion
This paper has presented an extension of Carroll’s (2006) EGM, and its combination
with VFI by Barillas and Fernández-Villaverde (2007), to non-concave, and possibly non-
differentiable problems. The proposed algorithm yields substantial gains in accuracy and
computational time compared to VFI.

I have illustrated the algorithm in the context of a problem with one continuous non-
durable and one discrete durable choice and fixed adjustment costs. Yet, the generalized
EGM is also a much faster and accurate alternative to discretized VFI to solve non-
concave problems with multiple continuous variables. It improves accuracy by avoiding
discretization in one dimension, while at the same time increasing computation speed
thanks to the efficiency of the EGM step.
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A Proofs
Proof of Proposition 1. Theorem 1 in Edlin and Shannon (1998) implies that an
interior maximizer x∗(t) ∈ arg maxx g(x, t) of a function g(x, t) is strictly increasing in
t if ∂g/∂x is increasing in t at x∗(t). Under the maintained assumptions, Theorem 3 in
Clausen and Strub (2012) implies that, for given (d, y, d′), the objective function on the
right hand side of (16) is differentiable in a′ at an interior optimum, with partial derivative
with respect to a′ equal to the right hand side of (13). Since the right hand side of (13)
is strictly increasing in a, Theorem 1 in Edlin and Shannon (1998) applies.
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B Sensitivity analysis
This section reports a sensitivity analysis for a number of parameters. When not explicitly
reported, parameter values are the same as in Section 5.2.

All three methods converge in 87 iterations when the convergence tolerance is 1e-4,
as opposed to 117 iterations when the tolerance is 1e-5. Reducing the tolerance by an
order of magnitude has hardly any effect on accuracy.

Table 4: Sensitivity analysis (1000 asset grid points).

Model CPU Average Maximum # of Euler Errors > −3
(s) Euler error Euler error (%��)

β = .92, σ = 1, τ = 0
EGM 69 -6.93 -2.09 10
VFI1 1414 -3.74 -2.22 3
VFI2 499 -3.85 -2.00 30

β = .94, σ = 1, τ = 0
EGM 82 -6.85 -2.83 0
VFI1 1270 -3.98 -2.51 0
VFI2 527 -3.99 -1.94 5

β = .93, σ = 2, τ = .2435
EGM 153 -6.79 -2.50 1
VFI1 4182 -3.88 -2.77 0
VFI2 934 3.82 -2.16 4

β = .93, σ = 3, τ = .2435
EGM 148 -6.75 -2.23 2
VFI1 3897 -3.94 -2.31 1
VFI2 881 -3.92 -2.21 96

Convergence tolerance=1e-4
EGM 58 -6.93 -2.34 1
VFI1 1101 -3.84 -2.67 1
VFI2 406 -3.81 -2.58 12
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