Giulio Fella 1

Macroeconomics A

Solution to problem set 7

I have made a mistake in setting up this problem. Given the chosen production function, assuming that the only income is income from renting capital to firms leaves a residual e_t which is unassigned. This is bad! Assume that e_t is distributed as dividend income to consumers. Let us denote by D_t dividend income.

1. The dynamic budget constraint is now

$$B_{t+1} = (1+r_t)B_t + D_t - C_t \tag{1}$$

as there is no labour income.

(a) Replacing for $C_t + i$ in the consumer problem using the dynamic constraint gives

$$\max_{\{B_{t+i+1}\}_{i=0}^{\infty}} \sum_{j=0}^{\infty} E\left(\frac{u(B_{t+i+1} + D_t - (1+r_t)B_t)}{(1+\rho)^i} \Big| I_t\right). \tag{2}$$

The first order condition with respect to B_{t+1} is

$$u'(C_t) = E\left(\frac{1 + r_{t+1}}{1 + \rho}u'(C_{t+1})\Big|I_t\right).$$
(3)

Given the utility function it is $u'(C) = 1 - 2\theta C$ and the Euler equation (3) can be rewritten as

$$1 - 2\theta C_t = E\left(\frac{1 + r_{t+1}}{1 + \rho} (1 - 2\theta C_{t+1}) \middle| I_t\right). \tag{4}$$

(b) Equilibrium requires $r_{t+1} = F'(K_{t+1}) = A$, where A is deterministic. Hence, in equilibrium the Euler equation is

$$1 - 2\theta C_t = E\left(\frac{1+A}{1+\rho}(1-2\theta C_{t+1})\Big|I_t\right)$$
 (5)

and, given $\rho = A$,

$$1 - 2\theta C_t = E\left(\left(1 - 2\theta C_{t+1}\right)\middle|I_t\right) \tag{6}$$

or

$$C_t = E\left(C_{t+1}|I_t\right). \tag{7}$$

Finally, in equilibrium, the dynamic budget constraint becomes

$$K_{t+1} = (1+A)K_t + e_t - C_t. (8)$$

Now things add up!

Giulio Fella 2

(c) With quadratic preferences and linear production function with additive shocks, there is no consumption tilting effect on the Euler equation as shocks do not affect the ratio between $1 + r_{t+1}$ and $1 + \rho$. So all the dynamics will be driven by consumption smoothing.

- (d) Without uncertainty, it is $C_t = C_{t+1}$. Consumption is flat. Consumption would respond one-to-one to an unexpected permanent shock. On the other hand, it will respond less than one-to-one to the permanent shock to spread the one-off shock across the whole lifetime. The intertemporal budget constraint requires the present value of the increase in consumption to equal the size of the one-off shock e_t
- (e) Use the guess to replace for C_t in the equilibrium dynamic constraint (8). This gives

$$K_{t+1} = (1+A)K_t + e_t - (\alpha + \beta K_t + \gamma e_t). \tag{9}$$

with α , β , γ to be determined.

(f) The guess must also satisfy the Euler equation which requires

$$\alpha + \beta K_t + \gamma e_t = E \left(\alpha + \beta K_{t+1} + \gamma e_t | I_t \right) \tag{10}$$

or

$$\beta K_t + \gamma e_t = \beta E(K_{t+1}|I_t) + \gamma E(e_t|I_t). \tag{11}$$

Using the policy function for K_{t+1} in (9) this becomes

$$\beta K_t + \gamma e_t = \beta E \left(\alpha + (1 + A - \beta) K_t + (1 - \gamma) e_t \right) \left| I_t \right) + \gamma E(e_t | I_t). \tag{12}$$

This is now a deterministic equation which can be solved for the unknown parameters α , β , γ . The value of $E(e_{t+1}|I_t)$ depends on how e_t is distributed.

If e_t is white noise, it is $E[e_{t+1}|I_t] = 0$ and (13) becomes

$$\beta K_t + \gamma e_t = \beta \left(\alpha + (1 + A - \beta) K_t + (1 - \gamma) e_t \right). \tag{13}$$

For it to be satisfied for any K_t and e_t we must equate coefficients on the same variables on both sides of the equation. This requires $\alpha = 0$, $\beta = A$ and $\gamma = A(1-\gamma)$ or $\gamma = A/(1+A)$. Replacing in equation (9) gives

$$K_{t+1} = K_t + \frac{1}{1+A}e_t \tag{14}$$

and

$$C_t = K_t + Y_t - K_{t+1} = (1+A)K_t + \left(1 - \frac{A}{1+A}\right)e_t = (1+A)K_t + \frac{A}{1+A}e_t.$$
 (15)

The shock is temporary, there is no consumption tilting. Consumption smoothing dictates that most of the shock is save (i.e. goes into $K_{t+1}-K_t$) and only a fraction is consumed.

Giulio Fella 3

(g) In this case it is $E(e_{t+1}|I_t) = e_t$. Replacing in equation (13) we obtain

$$\beta K_t + \gamma e_t = \beta \left(\alpha + (1 + A - \beta) K_t + (1 - \gamma) e_t \right) + e_t. \tag{16}$$

For it to be satisfied for any K_t and e_t we must equate coefficients on the same variables on both sides of the equation. This requires $\alpha = 0$, $\beta = 1 + A$ and $\gamma = 1$. Replacing in equation (9) gives

$$K_{t+1} = K_t \tag{17}$$

and

$$C_t = K_t + Y_t - K_t + 1 = Y_t = AK_t + e_t. (18)$$

The shock is permanent, there is no consumption tilting. Consumption smoothing dictates that all the of the shock is consumed and none of it is saved.