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Abstract

The endogenous gridpoint method (EGM), pioneered by Carroll (2006), offers an ef-
ficient alternative to traditional numerical approaches for solving dynamic economic
models with realistic heterogeneity, nonlinearities, occasionally binding constraints,
and discrete-continuous choices. Unlike exogenous grid methods (EXGM), EGM
reverses the standard solution logic by fixing the value of post-decision states and
solving for pre-decision states using the Euler equation. The resulting problem
involves finding the zero of a known, and often linear, function as opposed to one
which is known only at a finite set of points. This significantly reduces interpo-
lation errors and computational costs. EGM is especially advantageous in models
with borrowing constraints, discrete choices, or non-concave objectives, offering
significant computational savings and improved accuracy. This survey provides a
comprehensive overview of EGM, detailing its core principles, implementation, and
extensions to more complex settings, including problems with multiples continuous
state variables and discrete-continuous choices. By serving as both an introduction
for newcomers and a roadmap for advanced applications, this survey underscores
the accuracy, computational efficiency and versatility of EGM which make it a valu-
able tool for solving high-dimensional dynamic optimization problems in economics
and finance.
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1 Introduction

Dynamic economic models are fundamental tools for analyzing a wide range of intertem-

poral decisions, from household consumption-savings problems to firm investment choices

and general equilibrium models. In the presence of realistic heterogeneity, occassionally

binding constraints, adjustment costs or discrete choices the resulting value and policy

functions are characterized by substantial nonlinearities and possibly nonconcavities and

non-differentiabilities which make them unsuitable to local solution methods.

Traditional global methods to solve such problems involve choosing an exogenous,

time-invariant, grid for the beginning-of-period (or “pre-decision”) state vector, solving

forward for the end-of-period (or “post-decision”) optimal choice for the endogenous state

variables and iterating on the value function and/or policy functions. While conceptu-

ally straightforward, this “exogenous grid” approach (EXGM) requires numerical root-

finding and repeated interpolation of conditional expectations over large sets of points,

ultimately increasing the computational burden and compounding the well known curse

of dimensionality (Bellman, 1961). Moreover, in some models, such as those with occa-

sionally binding constraints, exogenous grids can lead to significant interpolation errors

near kinks of the policy functions.

The endogenous gridpoint method (EGM) pioneered by Carroll (2006) addresses these

limitations by reversing the usual logic: instead of solving for the choice that corresponds

to a beginning-of-period state, it chooses a grid for the end-of-period’s endogenous state

variables and uses the Euler equation to solve endogenously for the associated value of the

beginning-of-period endogenous state variables. The intuition is possibly best conveyed

in the case of an optimal saving problem. Rather than solving for the next-period wealth

a′(a) on a grid for current wealth a, it solves for its inverse a = a′−1 on an exogenous

grid for a′, taking advantage of the fact that the Euler equation is often linear in, or

a closed-form function of, a but not a′. This eschews numerical root-finding and the

associated repeated evaluation of the Euler equation and the associated expectation. An
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additional advantage in the case of models with exogenous borrowing constraints is that

the location of the constraint on a′ is known and the corresponding value of initial wealth

can be computed exactly.

This survey presents a unified exposition of the endogenous gridpoint method, high-

lighting its core ideas, implementation details, and extensions that have been proposed

to handle more complex environments than the optimal saving problem. We begin with

the foundational single-asset framework, comparing EGM’s computational performance

and accuracy to those of conventional EXGM or time iteration. We then show how EGM

can be extended to problems involving multiple continuous state variables, as well as to

non-concave and non-differentiable problems involving a mixture of continuous and dis-

crete choices, such as housing or default decisions. Throughout, we emphasize both the

key theoretical insights—why and when EGM works well—as well as the practical steps

needed to implement it efficiently in applications.

Economic applications of EGM. EGM has gained substantial popularity is solving

high-dimensional dynamic problems in economics. The following provides only an incom-

plete survey of its applications. Carroll’s (2006) seminal contribution introduced EGM in

the context of optimal saving problems with a single state and control variables. Barillas

and Fernández-Villaverde (2007) extended it to an environment, the stochastic growth

model with endogenous labour supply, with more than one control. Hintermaier and

Koeniger (2010) introduced a hybrid EGM method that can accommodate an additional

continuous state variable. Guerrieri and Lorenzoni (2017) apply it to study the implica-

tions of a tightening of borrowing limits in a model with both durable and non-durable

goods. Bayer, Luetticke, Pham-Dao and Tjaden (2019) use it to study the aggregate

implications of surprise changes in aggregate income uncertainty in an environment with

liquid and illiquid assets. White (2015) and Ludwig and Schön (2018) both proposed

non-hybrid extensions of EGM to problem with multiple continuous state variables and

how to address the complications of interpolating over the resulting multi-dimensional,

non-regular endogenous grid. The need to speed up the estimation of the rich life-cycle
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model with discrete education and crime choices in Fella and Gallipoli (2014) lead to

Fella’s (2014) extension of EGM to non-concave and non-differentiable environments

with both a discrete and continuous state (DC-EGM) variables. Iskhakov, Jørgensen,

Rust and Schjerning (2017) derived independently a very similar DC-EGM algorithm.

In addition to proposing a more efficient way to discard local, but not global, maxima,

they show how extrinsic taste shocks can be used to control the propagation of kinks

inherent to discrete-continuous problems. Iskhakov and Keane (2016) and De Nardi,

Fella and Paz-Pardo (2024) use DC-EGM to study, respectively, the effect of social se-

curity and optimal welfare policies in life-cycle models with wealth and human capital

accumulation and a discrete labour supply choice. Ameriks, Briggs, Caplin, Shapiro and

Tonetti (2020) study the interaction between precautionary saving and bequest motive in

a life-cycle model with a binary choice between private and public provision of long-term

care. Yao, Fagereng and Natvik (2021) study how housing and mortgage debt influence

the marginal propensity to consume in a life-cycle model with a discrete housing choice

and non-convex transaction costs. Finally, Druedahl and Jørgensen (2017) further gen-

eralised EGM to environment with multiple continuous and discrete state variables and

proposes a simpler interpolation technique compared to White (2015) and Ludwig and

Schön (2018). Druedahl and Jørgensen (2018) use it to study the coexistence of posi-

tive gross credit-card debt and positive gross wealth, while Ejrnæs and Jørgensen (2020)

apply it to study fertility and abortion choices in a life-cycle model.

Goals and outline. This survey aims to serve two purposes. First, it acts as a tu-

torial for researchers who wish to implement EGM in relatively standard models but

may not have been fully aware of the associated computational savings and accuracy

improvements. Second, it provides a roadmap for tackling challenging classes of dynamic

problems—from multidimensional concave problems to discrete-continuous choice mod-

els—where EGM and its variants can be usefully applied. Ultimately, the goal is to

underscore the versatility of EGM and inspire further application of its core insight into

contemporary quantitative economics research.
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The survey is organized as follows. Section 2 introduces EGM in Carroll’s (2006)

original set up with a single continuous state variable. The simple set up is used to

bring out the differences from standard exogenous grid methods, such as value or policy

function iteration, that account for the substantial gains in computational costs. The

section also studies a numerical example that quantifies the relative contribution of each

of these difference to the overall improvement.1 Section 3 discusses extensions of EGM to

environments with multiple continuous state variable that satisfy concavity and differen-

tiability of the objective. It is well known that discrete choices and fixed costs introduce

nonconcavity and non-differentiabilities even with respect to the continuous state vari-

ables of a problem. Section 4 discusses extensions of EGM to problems with both discrete

and continuous state variable for which the advantages, in terms of execution time and

accuracy, of EGM are starkest. Section 5 concludes

2 EGM with a single, continuous state variable

This section introduces EGM and discusses its advantages and tradeoffs in a slightly

simplified version of the income fluctuation problem in Carroll’s (2006) seminal paper.

Consider an infinitely lived consumer whose goal is to maximize lifetime utility

E0

∞∑
t=0

βtu(c(t))

where c(t) is consumption at time t and β ∈ (0, 1) is the discount factor. Time is

discrete. The felicity function u(·) is twice differentiable, strictly increasing and concave

and satisfies the Inada conditions. In each period, households draw stochastic labor

income y taking non-negative values in the ordered grid Gy = {y1, y2, . . . , ym} according

to a stationary, first-order Markov chain. The consumer can save at the gross risk-free

rate R but cannot borrow. For the moment, we are also going to assume that the income
1The Julia code used for the numerical example is available at

https://github.com/gfell/egm_oreef.
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process implies that the borrowing constraint is never binding along an optimal path.2

The consumer problem can be written in recursive form as

V (a, y) = max
a′≥0

u(y + Ra − a′) + βEV (a′, y′). (1)

Under our assumptions, a solution to the Bellman equation exists and is unique, the value

function V is differentiable, strictly increasing and stricty concave. The optimal policy

satisfies the first-order condition (FOC)

u′(y + Ra − a′) = βEVa(a′, y′), (2)

where Va, the partial derivative of V with respect to a′, satisfies the envelope condition

Va(a, y) = Ru′(y + Ra − a′). (3)

Conventional exogenous grid methods (EXGM), such as value function or time itera-

tion, solve the problem characterized by equations (1) and (2) where (a, y) is the state at

the beginning of the period or, equivalently, before the choice of a′ (pre-decision). More

specifically, if one denotes by Ga = {α1, α2, . . . , αn} the discrete grid for wealth and by

Gay = Ga × Gy the grid for the state vector (a, y), conventional EXGM finds the value

and policy functions by the following iterative procedure.

Conventional (pre-decision state) EXGM

Given a guess of values V n
a (a, y) with (a, y) ∈ Gay, iterate until convergence on:

1. For each point (a, y) ∈ Gay find a′(a, y) satisfying the FOC (2).

2. Replace for a′ in (1) or (3) to compute V n+1
a (a, y).

Step 1 in conventional EXGM is costly because the FOC (2) cannot be solved ana-

lytically for a′. Therefore, for each (a, y) the FOC has to be evaluated at each element
2This would be the case if the the lower bound on the labor income support y1 = 0.
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a′
k of the sequence of guesses of the numerical root finding routine. Each such evalua-

tion involves (a) interpolating V n
a at points (a′

k, y′); and (b) integrating over the y′ to

compute the approximate conditional expectation EV n
a (a′

k, y′). The computation of the

conditional expectation for each candidate zero a′
k, is actually the costlier part of Step

1.3

The endogenous grid method (EGM) of Carroll (2006) provides an alternative solution

method that not only avoids the repeated computation of the expectation, but also the

costly numerical root finding. Rather than solving the FOC (2) for the end-of-period

endogenous state variable a′ given (a, y), it treats a′ as fixed and solves for the beginning-

of-period state variable a given (a′, y). In other words, EGM defines exogenously a grid Ga

for a′ and, for each income state y, finds endogenously the value of beginning-of-periods

assets aend for which a′ = a is the optimal saving choice. To the extent that the marginal

utility of consumption has an analytic inverse the approach eschews root finding as the

FOC (2) can be rewritten as

y + Ra = a′ + u′−1[βEVa(a′, y′)]. (4)

In other words, EGM exploits the fact that the FOC is analytic, in fact linear, in a

although not in a′.

Formally, the EGM algorithm is as follows.

EGM

Given a guess of values V n
a (a, y) with (a, y) ∈ Gay, iterate until convergence on:

1. For each point (a′, y) = (αi, yk) ∈ Gay find aend
ik = a satisfying the FOC (4).

This defines the value of the policy function a′(sik) = αi in state sik = (aend
ik , yk).

2. For each yj interpolate {(sik, a′(sik))}n
i=1 on Ga to obtain a′(·) on the, iteration-

invariant, exogenous grid Gay.

3. Replace for a′ in (1) or (3) to compute V n+1
a (a, y).

3Step 2 is meant to encompass both value function and time iteration. The former uses the Bellman
equation (1) to update the value function and then computes its partial derivative. The latter directly
updates the partial derivative using the envelope condition (3).
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Step 1 highlights the big advantage of EGM compared to conventional EXGM. The

conditional expectation on the right of the FOC is a function of y and the end-of-period

(post-decision) endogenous state variable a′. By making a′ fall on a fixed grid, EGM

evaluates the expectation (and the FOC in general) only on the (n × m) grid points of

Gay. Under conventional EXGM, the number of evaluations of the expectation (and the

FOC is general) equals the number of iterations of the root finding routine for each of

the (n × m) grid points for the beginning-of-period (pre-decision) state (a, y).

Step 2, though, entails a cost which is absent from EXGM. In order to check conver-

gence of the solution consecutive iterates of the value function or its derivative have to

be evaluated on the same set of points. This requires interpolating the policy function

computed on the endogenous grid on a time-invariant, exogenous grid.4 This trade-off is

present only in infinite horizon models. In finite horizon models one can let the grid for

a′ at time t coincide with the endogenous grid for a at time t + 1, as in Iskhakov (2015)

and Iskhakov et al. (2017).

The above discussion of the main advantage of EGM compared to EXGM is not fully

fair as conventional (pre-decision) EXGM, though the most common, is not the most

efficient implementation of EXGM. Consider the alternative formulation of our problem

where the choice of state is (a′, y), the state at the end of the period or, equivalently,

after the choice of a′ (post-decision).5 Let W (·, ·) denote the associated value function

which implies the alternative formulation of the Bellman equation (1)

W (a, y−1) = E[max
a′

u(y + Ra − a′) + βW (a′, y)], (5)

4One could invert the ordering of step 2 and 3 and interpolate the value function or its partial
derivative on the endogenous grid.

5Wright and Williams (1982) and Wright and Williams (1984) were the first to use a solution method
based on a post-decision state. Judd (1998, p. 429) shows how to construct the end-of-period state Bell-
man equation. The method is extensively used in approximate dynamic programming; i.e. reinforcement
learning (Van Roy, Bertsekas, Lee and Tsitsiklis, 1997; Powell, 2007).
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where E(·) denotes the conditional expectation over y. The associated FOC is

u′(y + Ra − a′) = βWa(a′, y) (6)

and the envelope condition

Wa(a, y−1) = REu′(y + Ra − a′). (7)

It is straighforward to see that W (a′, y) in equation (5) equals EV (a′, y′) in equation (1);

the post-decision value function is the conditional expectation of the pre-decision one.

Under such a formulation EXGM finds the value and policy functions by the following

iterative procedure.

Post-decision state EXGM

Given a guess of values W n
a (a, y) with (a, y) ∈ Gay, iterate until convergence on:

1. For each point (a, y) ∈ Gay find a′(a, y) satisfying the FOC (6).

2. Replace for a′ in (5) or (7) to compute W n+1
a .

If the value function is defined in terms of the end-of-period, or post-decision, endoge-

nous state, finding a solution to the FOC in step 1 is a deterministic problem, although

it still requires numerical root finding. As step 2 makes clear though the conditional

expectation is now outside the maximum operator and is computed only once for each

of the n × m points on the grid Gay. As is the case with EGM, the post-decision state

EXGM minimizes the number of numeric integrals to compute in solving the problem.6

Having established a fair EXGM benchmark we can finally list the relative merits of

EGM. First, EGM avoids numerical root finding in Step 1, although in infinite horizone

problems this has to be traded off against the additional interpolation in Step 2. Second
6Strictly speaking this is the case only within the class of non-parametric solutions for the value

function. Judd, Maliar, Maliar and Tsener (2017) propose a method which further reduces the cost of
computing the expectation provided one is willing to restrict attention to value functions in the (large)
class of analytic functions which are separable in endogenous and exogenous state variables.
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and related, EGM produces an exact solution to the Euler equation—the Euler errors

exactly equal zero on the endogenous grid points—while for EXGM this is the case only

up to an interpolation/approximation error.7 Third, in models with occasionally binding

inequality constraints on the post-decision state variables, EGM determines exactly the

level of beginning-of-period wealth where the constraints become binding. For example,

suppose that the lowest income state y1 > 0 and the ad-hoc borrowing constraint a′ ≥ 0

is binding with strictly positive probability. If the first grid point in Ga is α1 = 0, for

each yj ∈ Gy EGM solves for the value of initial wealth aend
1j for which the FOC holds

with a′ = 0. By monotonicity, the policy function is known in closed form—a′ = 0—for

all a ≤ aend
1j . Therefore, unlike EXGM, EGM never interpolates across the level of initial

wealth for which the borrowing constraint becomes binding. On the other hand, EGM

is at a disadvantage when solving models featuring inequality constraints in terms of

beginning-of-period wealth such as models with default risk.

2.1 Numerical performance comparison

This section compares the computational speed and accuracy of the three algorithms

discussed above by solving a parameterized version of problem (1). It assumes log utility,

R = 1.025 and a discretized (log-)income process which corresponds to an AR(1) with

autoregressive coefficient ρ = 0.97 and conditional standard deviation σ = 0.24. The dis-

cretization follows Rouwenhorst with 11 grid points. The calibrated value of the discount

factor is β = 0.955 to match an average wealth-income ratio of about 4.4. The param-

eterization implies that the borrowing constraint is binding with positive probability on

the optimal path. Finally, the asset grid has 100 points. The solution is computed by

piecewise-linear interpolation off nodes using Julia version 1.10 on an Apple® MacBook

Pro® with M2 CPU and 16GB RAM. To solve non-liner equations we use NLsolve.

Table 1 illustrates the performance advantages, in terms of both of both executiion
7Note that step 2 in the EGM algorithm is necessary only to establish convergence. Upon convergence,

one can use the policy function on the endogenous grid in the model simulation.
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Table 1: Speed and accuracy of EGM and time iteration.

EGM Time iteration
End. grid simulation Ex. grid simulation Pre-decision Post-decision

(1) (2) (3) (4)
CPU (s) 1.39 (2.43) 1.39 (2.43) 19.98 4.84
L1 -3.89 -3.94 -4.02 -3.53
L∞ -2.04 -1.39 -1.39 -1.26
W/Y ratio 4.42 4.42 4.43 4.20

Notes: CPU is the time (in seconds) necessary to compute the solution; L1 and L∞ are, repectively, the
average and maximum of absolute residuals of the Euler equation across test points (in log10 units) on
a stochastic simulation of 200,000 observations.

time and accuracy, of EGM against standard time iteration. The reported measures of

accuracy are the average (L1) and maximum (L∞) absolute value of the log 10 residuals

in the Euler equation (2), over all test points at which it theoretically holds (off-corners).

Columns 3 and 4 report results for time iteration using respectively the pre-decision

and post-decision endogenous state. As anticipated, the post-decision state method is

subtanstially faster (by a factor of 4). The trade-off is lower accuracy not only as reflected

in a higher average of the Euler equation errors but also as a 5 per cent larger steady-

state wealth-income ratio. Since, marginal utility is a convex function of consumption, the

linear interpolation of marginal utility, as opposed to consumption, in the post-decision

method results in an upward bias in future expected marginal utility and therefore in

saving and the wealth-income ratio.

Column 1 and 2 report the same statistics for EGM using, respectively, the endogenous

and exogenous grid for the simulation. In terms of execution time, EGM is about 3 times,

1.39 against 4.84 seconds, faster than post-decision time iteration and 14 times than pre-

decision time iteration. When using the same (exogenous) grid for the simulation as time

iteration, EGM has a very similar level of accuracy as pre-decision time iteration. When

simulating using the endogenous grid, EGM displays a lower maximum Euler equation

error because it never interpolates around the kink in the policy function.

Finally, the numbers in parenthesis for CPU time in the EGM columns refer to the case
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in which the Euler equation is solved numerically, rather than analytically as in equation

(4), for a. In this case, the execution times increases by about 75% to 2.43 seconds. EGM

is still twice as fast as post-decision time iteration. This is due to the fact that, in the case

of EGM, numerical root finding involves evaluation of the analytic function u′(c) with

known analytic derivative which is significantly less costly than repeated interpolation of

the expected marginal utility in the case of time iteration.

The comparison is of more than of academic interest. As equation (4) makes clear,

the ability to solve for a as a function of a′ in closed form relies on both (a) marginal

utility u′ and (b) the total resource function z(y, a) = Ra + y having an analytic inverse.

Neither property is general. For example, in the neoclassical growth model total resources

are given by the function Af(k) + (1 − δ)k which is not invertible with respect to capital

k. However, Carroll (2006) shows that one can still eschew root finding (except at the

very last iteration) by using z as an intermediate state variable to exploit the fact the

Euler equation still admits an analytical solution for z.8 Numerical root finding cannot

be avoided though when u′ is not analytically invertible.9 Hallengreen, Jørgensen and

Olesen (2024) show that significant gains in speed can be obtained by approximating the

inverse marginal utility u′−1 by an interpolator which can be constructed before solving

the model.

3 EGM with multiple continuous state variables

Section 2 has illustrated the gains and tradeoffs associated with EGM in simple problems

with a single, continuous, endogenous state variables. The gains in computational speed

compound with more complex problems, but some additional difficulties also arise. This

section discusses these issues introducing a continuous durable choice into the consumer
8Barillas and Fernández-Villaverde (2007) use the neoclassical growth model with endogenous labour

supply to generalise Carrol’s method to models with multiple controls, though still only one endogenous
state variable.

9This is the case, for example, in models with non-separable utility in consumption and housing
services (e.g. Bajari, Chan, Krueger and Miller, 2013; Fella, 2014), or in the intra-household bargaining
model in Mazzocco (2007) in which utility depends on both private and public consumption.
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problem of the previous section. The resulting model has two continuous endogenous

state variables, but our results generalise to a richer class of problems; namely, concave

problems for which FOCs are both necessary and sufficient.

Let d denote the current stock of durables. The felicity function u(c, d) is strictly

increasing and concave and twice-differentiable. Durables depreciate at rate δ.

The consumer problem can be written in recursive form as

V (a, d, y) = max
a′,d′≥0

u(y + Ra + (1 − δ)d − d′ − a′, d) + βEV (a′, d′, y′).

Assuming, for simplicity, an interior maximum the FOCs10 of the problem are

uc(y + Ra + (1 − δ)d − d′ − a′, d) = βEVa(a′, d′, y′) (8)

and

uc(y + Ra + (1 − δ)d − d′ − a′, d) = βEVd(a′, d′, y′) (9)

which can be combined into the intra-temporal condition

EVa(a′, d′, y′) = EVd(a′, d′, y′). (10)

There are two alternative ways to apply EGM to the above problem. The first one,

which we just label EGM, is a straightforward extension of the univariate case. Let Gd

denote a discrete grid for durables. EGM defines an exogenous grid Ga × Gd for the

end-of-period endogenous state variables (a′, d′) and, for each income state y, solves for

the associated values of beginning-of-period assets and durables (aend, dend) that satisfy

the FOCs (8) and (9). If one denotes by I and J the sets of indices for grid points,

respectively, in Ga and Gd the following pseudo-code applies.
10The envelope conditions are Va(a, d, y) = Ruc and Vd(a, d, y) = (1 − δ)uc + ud.
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EGM

Given a guess of values V n
a (a, d, y) with (a, d, y) ∈ Gady = Ga × Gd × Gy iterate until

convergence on:

1. For each point (a′, d′, y) = (αi, dj, yk) ∈ Gady find aend
ijk = a and dend

ijk = d satisfying
the two FOCs (8) and (9).
These define the values of the policy functions a′(sijk) = αi and d′(sijk) = dk in
state sijk = (aend

ijk , dend
ijk , yk).

2. For each yk interpolate {(sijk, a′(sijk))}(i,j)∈I×J and {(sijk, d′(sijk))}(i,j)∈I×J on
Ga × Gd to obtain a′(·) and d′(·) on the, iteration-invariant, grid Gady.

The second method, which we label hybrid EGM (HEGM), is due to Hintermaier

and Koeniger (2010) and Ludwig and Schön (2018). It defines an exogenous grid for

end-of-period assets and beginning-of-period durables (a′, d). For each income state y

and d ∈ Gd: (i) it uses the intra-temporal condition (10) to solve for the optimal d′

for each a′ ∈ Ga; and (ii) it uses either (8) or (9) to find endogenously the values of

beginning-of-period assets aend given (a′, d, d′). The corresponding pseudo-code follows.

HEGM

Given a guess of values V n
a (a, d, y) with (a, d, y) ∈ Gady = Ga × Gd × Gy iterate until

convergence on:

1. For each point (a′, d, y) = (αi, dj, yk) ∈ Gady, (i) find d̂ = d′ satisfying equation
(10); (b) replace in either (8) or (9) to find aend

ijk = a.

This defines the values of the policy functions a′(sijk) = αi and d′(sjik) = d̂ in
state sijk = (aend

ijk , dj, yk).

2. For each (dj, yk) interpolate {(sijk, a′(sijk))}i∈I and {(sijk, d′(sijk))}i∈I on Ga to
obtain a′(·) and d′(·) on the, iteration-invariant, grid Gady.

At first sight, it may seem that EGM is faster. If uc is analytically invertible for c, the

FOCS (8) and (9) can be solved analytically for aend and dend.11 Even if uc does not have

an analytic inverse, solving the two FOCs requires only evaluation of known functions.

HEGM, instead, requires solving the intra-temporal condition (10) for d′ which involves
11Iskhakov (2015) characterises the class of concave problems that can be solved by EGM without root

finding.
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repeated interpolation as typically V and its derivatives are only known on a finite grid.

In fact, given that the infinite horizon setup considered requires interpolating on an

iteration-invariant grid in order to establish convergence, the trade-off is more involved.

The costs of interpolation in step 2 are significantly different between the two methods.

HEGM interpolates only in one dimension. The set of grid points sijk is off the,

iteration-invariant, grid Gady only along the asset dimension due to aend
ijk being endogenous.

So interpolation is straighforward, just as in the univariate problem in Section 2.

EGM, instead, interpolates with respect to both assets and durables using the irregular

(non-rectilinear) grid of endogenous interpolating nodes {(aend
ijk , dend

ijk )}(i,j)∈I×J . Unlike in

a rectangular grid, one cannot locate the sector in which a point lies by univariate search

along each grid dimension as the dimensions are not orthogonal. This is illustrated in

Figure 1. A univariate search for the location of point X in the irregular, endogenous

grid would incorrectly place it in the grey shaded sector, rather than the sector to its left.

Locating the correct sector requires starting from some initial guess and moving from one

sector to the other depending on which sector boundaries are violated. In general, such

a procedure, typically referred to as“visibility walk”, may fail to converge and get stuck

in a cycle.

Ludwig and Schön (2018) propose to partition the endogenous grid into triangles using

Delaunay triangulation which ensures convergence of the visibility walk. After locating

the triangle containing the query point X the associated function value is computed using

barycentric interpolation with interpolating nodes given by the vertices of the triangle.12

Delaunay triangulation is costly13, though, and has to be carried out at each iteration.

Ludwig and Schön (2018) report that EGM with Delaunay triangulation is actually slower

than HEGM for dense (200x200) grids.

White (2015) proposes an alternative approach with substantially lower computational

costs. Its key insight is that an irregular grid with sectors with 2n vertices, such as the
12The baricentric weights ω for a point X ≡ (a, d) in the triangle with coordinates (aend

i , dend
i ), i =

1, 2, 3 solve the system of equations a = ω1aend
1 + ω2aend

2 + (1 − ω1 − ω2)aend
3 and d = ω1dend

1 + ω2dend
2 +

(1 − ω1 − ω2)dend
3 .

13Its construction time increases at rate O(n log n) with the total number of grid points n.
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Figure 1: Irregular grid

aend
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dend
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Notes: Interpolation on a non-rectilinear grid. Searching independently in each grid dimension
does not locate the sector in which X ∈ R2 resides.

one in Figure 1, can be continuously mapped to the [0, 1]n hypercube. Multi-linear

interpolation can then be applied on the transformed set of nodes. The computation

costs increases only at approximately linear rate with the total number of nodes n. The

additional advantage is that the method can be parallelized while Delaunay triangulation

cannot due to its sequential construction. The method still involves a visibility walk to

identify the sector in the endogenous grid to be mapped onto the unit hypercube. Its

limitation is that, contrary to Delaunay triangulation, the visibility walk is guaranteed

to converge only in a smaller, though still very large, class of problems for which policy

functions are monotonic in the endogenous state variables.14

Finally, Druedahl and Jørgensen (2017) propose what they call a “local” triangulation

that eschews the visibility walk altogether. Their method cleverly exploits the fact that

there is a one-to-one mapping between points on the grid for the post-decision endogenous

states and on the associated endogenous grid. In terms of the problem in this section,

given y = yk, each point (a′, d′) = (αi, dj) ∈ Ga × Gd is associated with a unique pair

(aend
ijk , dend

ijk ). Therefore, a partition of the grid Ga ×Gd into rectangular triangles induces a
14White (2015) also provides general condition for the applicability of EGM.
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partition of the endogenous grid into corresponding, although not in general rectangular,

triangles. This is illustrated in Figure 2. Panel 2a plots the grid for the post-decision

endogenous variables (a′, d′), its partition into rectangular triangles; e.g. A, B, C. Panel

2b plots the non-rectangular endogenous grid for the pre-decision variables (a, d) and the

triangle associated with ABC in panel 2b and its bounding box, the (dotted) smallest

rectangle that contains it. One can then use each such triangle and associated bounding

box in the (a, d) space to interpolate at the points of an exogenous, iteration-invariant,

rectilinear grid Gady (panel 2c). For each point in Gady which falls in the bounding box,

one computes the barycentric interpolation weights with nodes given by the vertices of

the triangle. If the barycentric weights are non-negative, the point is weakly interior

to the triangle ABC (solid black circles in panel 2c) will be used for interpolation. If

instead one of the barycentric weights is negative, the point is exterior to the triangle

and there are two possibilities. In the first case, the point lies outside the boundary of the

endogenous grid in panel 2a and the weights are used to extrapolate. In the alternative

case, interpolation will not be carried out as the point is weakly interior to some other

triangle.15

Although Druedahl and Jørgensen (2017) do not benchmark their EGM method for a

concave problem of the kind considered in this section, it seems potentially fast compared

to the alternatives considered here. The general message of this section, though, is

that the extension of EGM to concave multidimensional problems is not trivial and the

trade-off between coding and execution time not necessarily favourable for somebody not

already heavily involved with the method.
15The method, as described in Druedahl and Jørgensen (2017), is actually more general, but more

costly, that the one described here as it can accomodate, non-concave, problems in which the policy
functions are not continuous and the induced triangulation in the endogenous grid is not necessarily a
partition of it.
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Figure 2: Druedahl and Jørgensen’s (2017) local triangulation

(a) Triangle in (a′, d′) space

a′

d
′

A B

C

(b) Triangle in (a, d) space

a
d

A B

C

(c) Barycentric interpolation

a

d
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C

Notes: The plots illustrates the “backward-induction” triangulation in Druedahl and Jørgensen (2017).
A triangle in the exogenous grid for (a′, d′) (panel a) maps into a triangle in the endogenous irregular
grid for (a, d) and associated bounding box (panel b). The bounding box identifies the candidate points
in the exogenous, rectangular grid in (a, d) space for interpolation with nodes given by the vertices of
the triangle. Interpolation is carried out only at points, lying inside the triangle (black dots), that have
non-negative barycentric weights (panel c).

4 EGM with a discrete-continuous state

This section discusses the application of EGM to problems with both discrete and contin-

uous endogenous state variables (DC problems in what follows). The number of discrete

variables is immaterial since they can all be stacked into a single state vector. We are

going to restrict to a single continuous state variable for tractability.

The model is basically the same as in the previous section with the only difference

that now the durable choice is binary d = {0, 1}. Think of d as a housing size choice.

Individuals decide when to upgrade their house. To simplify the notation, we assume the

choice to upgrade is irreversible, there is no depreciation and utility from housing services

starts accruing in the period the purchase takes place. The cost of the upgrade takes the

form of a perpetual mortgage payment of κ units of consumption per period.

The problem of an individual who has upgraded is given by

V (a, 1, y) = max
a′≥0

u(y + Ra − κ − a′, 1) + βEV (a′, 1, y′). (11)

Given that d = 1 is an absorbing state, the value function V (a, 1, y) captures the opti-
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mized utility contingent on having upgraded, whether in the current or past periods, and

before choosing current savings.

In the case of an individual who starts the current period with d = 0, let V (a, 0, y)

denote her value contingent on the current choice of not upgrading. The corresponding

Bellman equation is

V (a, 0, y) = max
a′≥0

u(y + Ra − a′, 0) + βEW (a′, 0, y′) (12)

where the continuation value is the expectation of

W (a, 0, y) = max{V (a, 0, y), V (a, 1, y)}, (13)

the value of choosing optimally between upgrading and not next period after observing

the labor income realization.

While V (a, 0, y) and V (a, 1, y) are both continuous and increasing in the continuous

state variable a under our maintained assumptions,16 only V (a, 1, y) is also (strictly)

concave and differentiable in a. The upper envelope W (a, 0, y) and, by equation (12),

V (a, 0, y) are, in general, neither concave nor differentiable, as W (a, 0, y) has a (“pri-

mary”) kink at the level of a for which the individual is indifferent between the two

discrete choices. Therefore, the Euler equation

−uc(Ra + y − a′, 0) + βEWa(a′, 0, y) = 0 (14)

is no longer sufficient for the optimal policy a′(a, 0, y) which substantially complicates

the solution. We illustrate these and other relevant issues associated with DC problems

with the help of Figure 3.

Just for the sake of exposition, assume in what follows that labor income is deter-
16Monotonicity, strict concavity and differentiability of V (a, 1, y) and continuity and monotonicity in

a of V (a, 0, y) and W (a, 0, y) follow from standard results in dynamic programming; e.g. Theorems 9.7
and 9.8 in Stokey, Lucas and Prescott (1989)
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ministic and the horizon is finite with N indexing the last period.17 Working backwards

from N , panel (a) in Figure 3 plots the two d-contingent value functions V N(a, d, y) and

their upper envelope W N(a, 0, y) as functions of a. The upper envelope W N(a, 0, y) has

a kink at the level of wealth for which the discrete choice flips from 0 to 1. As the two

d-contingent value functions are continuous and increasing, W N is non-differentiable and

non-concave, its slope increases discretely, at such a kink.

Working backward to period N − 1, consider the problem of solving for the optimal

saving function contingent on d = 0. Panel (b) plots the (absolute values of the) two

addenda of the Euler equation (14), as functions of end-of-period wealth a′, for an agent

that has not upgraded in the current period. The thick, discontinuous curve is the

discounted partial derivative of the continuation value W N in the left panel. The thin,

upward-sloping, curves are the marginal utility of consumption for two different values of

beginning-of-period wealth a. For values of initial wealth for which the upward-sloping

uc curves intersect the derivative of the continuation value more than once, the right

hand side of equation (12) has multiple local extrema and the Euler equation is not

sufficient for a maximum. Yet, the Euler equation is still necessary, all maxima are zeros

of the Euler equation, as proved in much greater generality by Clausen and Strub (2020).

Intuitively, a point of discontinuity in the Euler equation such as α6 is a local minimum,

not a maximum, as the value of the Euler equation, the vertical difference between the

thick line and an upward sloping curve, changes sign from negative to positive.18

Because DC problems are non-concave and non-differentiable, the typical approach in

economics, short of convexifying them by resorting to lotteries or ad hoc uncertainty, is

to discretize the continuous state variables and use value function iteration. The above

discussion, though, implies that solution methods that rely on the Euler equation can be
17The finite horizon ensures that the d-contingent optimal saving in the last periodN is zero and the

value function is strictly concave and differentiable in wealth as it coincides with the utility of spending
all cash at hand on non-durable consumption given the respective housing choice. The discussion applies
unchanged to solving an infinite horizon problem starting from a strictly concave and differentiable guess
V N for the value function and iterating to convergence.

18To the best of my knowledge the first paper that made this, only ex post obvious, point was a 2005
version of Gallipoli and Nesheim (2013). Intuitively, it is never optimal to choose a level of saving which
implies indifference between the two discrete choices next period.
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employed to locate local maxima, but they have to be supplemented by a “global” step

to eliminate solutions which are not a global optimum. Compared to the case with only

continuous state variables, the computational costs of solving the Euler equation for a′

using EXGM are substantially larger, as the Euler equation is both discontinuous and

has multiple zeros as a function of a′. EGM is unaffected in this respect as, for given a′,

the Euler equation has a unique zero and remains differentiable, and possibly analytical,

in a. It is this insight that motivated the extensions of EGM to this type of problems by

Fella (2014) and Iskhakov et al. (2017).

Consider its application to panel (b) of Figure 3 to compute the optimal saving and

value functions in period N−1 contingent on d = 0. By backward induction, the derivative

of the continuation value is known at the grid points αi ∈ Ga.19 For each αi, the standard

EGM step computes the endogenous value of initial assets âi for which αi is a local

optimum. Graphically, this is the value of âi associated with the upward sloping curve

intersecting the thick curve at αi. Panel (c) in Figure 3 plots the resulting linearly-

interpolated correspondence with âi on the horizontal and αi on the vertical axes. The

numbering of the points corresponds to the numbering of grid points in panels (a) and

(b). As noted above, the relationship between current assets and the corresponding local

maximum in panel (c) is not a function as, for 1 < i < 9, αi may not be the only local

maximum associated with âi. The correspondence is not even monotonic. In panel (b) the

upward sloping uc curve intersecting βEWa at grid point α6 is higher than that through

α5—consumption is lower at any level of a′—which implies â6 is lower than â5. It can

be proved, though, that the optimal saving correspondence for the problem is monotonic

(Proposition 1 in Fella (2014) and Theorem 2 in Iskhakov et al. (2017)). It follows that

the optimal saving correspondence is discontinuous and jumps from the lower to the

upper leg of the correspondence in panel (c) for some level of initial assets between â6

and â5. Fella (2014) and Iskhakov et al. (2017) propose two alternative ways to discard

suboptimal points generated by the EGM step. Panel (d) in Figure 3 illustrates the more
19Its value at α6 is assumed to be vmax.
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Figure 3: DC-EGM in period N − 1
(a) Upper envelope of d−specific values
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Notes: The plots illustrate how endogenous points corresponding to local, but not global, optima for
the saving function of individual with d = 0 in period N − 1 are eliminated in Iskhakov et al.’s (2017)
DC-EGM algorithm. Panel (a) plots the continuation value in the Bellman maximand. Panel (b) plots
its derivative (thick black curve) and that of the utility of consumption (thin line) for different values of
initial wealth a, both as a function of end-of-period wealth a′. The endogenous grid point âi, computed
by the standard EGM, ensures that the Euler equation is satisfied at a′ = αi. Panel (c) plots the resulting
correspondence from the endogenous grid points (on the horizontal axis) to the associated value of a′.
Panel (d) plots the associated value correspondence, the right hand side of the Bellman equation, and
shows how its upper envelope is used to discard non-global optima.

elegant and faster method in the latter paper. The panel plots the interpolated values

of the right hand side of equation (12) at the pairs (âi, αi) in panel (c). Since the value

function of the original problem is increasing in initial wealth, its approximation on the

grid in panel (d) is the upper envelope of the overlapping red and blue segments. The

algorithm discards points that do not belong to the upper envelope in the following way.
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it loops over the index i until it finds (a) the first grid point j such that âj+1 < âj and

(b) the first grid point k > j such that âj < âk. It then computes the upper envelope

between the segments associated respectively with points {1, j} and {j − 1, k}, discards

the dominated points i = {j, . . . , k−1} and continues until the next instance. Intuitively,

the upper the upper envelope can constructed from the piecewise linear interpolants of

each of the two overlapping segment.20 Faster implementations involve more technical

details which are beyond the scope of this survey.21 The algorithm in Dobrescu and

Shanker (2023) is the fastest I am aware of and quite intuitive despite involving some

technical test conditions.

Finally, to improve the accuracy of the solution, and avoid interpolation around the

discountinuity in the saving function, the refined grid can be supplemeted by the ap-

proximated location of the discontinuity a+ obtained as the intersection of the two lines

going respectively through points k − 1 and k and j − 1 and j in panel (d).22 In the

example in Figure 3 the resulting refined endogenous grid of interpolating nodes would

be given {â1, â4, a+ − ν, α+ + ν, â8, â9, â10} with ν an appropriately small number which

is necessary as most interpolating algorithms do not accept grids with identical abscis-

sas. The associated optimal saving values at a+ ± ν are obtained by interpolation. For

example, in the case of a+ + ν one could extrapolate using points 8 and 9. Having solved

for the optimal saving function in period N − 1 contingent on d = 0 one obtains the

associated value function V N−1(a, 0, y) from the Bellman equation (12) and continues

iterating backward.23

20This is the approach in Bueren (2025) who exploits the envelope theorem to compute the slope of
each segment, the derivative of the value function, from the marginal utility of (the known) consumption
at the grid points.

21Iskhakov et al. (2017) too do not describe their upper envelope algorithm.
22An alternative, that does not require keeping track of the dominated points i = {j, . . . , k − 1},

exploits the insight of Bueren (2025). One can obtain a+ as the intersection of the two lines through
j − 1 and k with respective slopes given by the marginal utility of consumption at points j − 1 and k.

23The algorithm in Fella (2014) instead identifies the subset of the grid for a′ where the Euler equation
may have multiple local maxima; Anc = {α2, α7} in panel (b). For points αi ∈ Anc it uses the standard
EGM step to compute the associated value of initial assets âi. It then verifies that αi is a global maximum
by maximizing the discretized right hand side of equation (12) given a = âi with respect to a′ ∈ ANC . If,
upon evaluating e.g. point α5 in panel (b), it finds that the local maximum for the discretized problem
is α8, α6 and α7 can be discarded by monotonicity without the need for the EGM step.
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One feature of DC problems is that kinks propagate backwards. This can be seen

in our example. The primary kink in W N at the level of wealth a = α6 for which the

consumer is indifferent between the two discrete choices generates a“secondary” kink in

the d-specifiic value function V N−1(a, 0, y) at a = a+, the value of wealth for which saving

in period N jumps up and the future discrete choice switches. It follows that the upper

envelope W N−1(a, 0, y) will likely have two kinks: a primary one at the level of wealth for

which V N−1(a, 0, y) and V N−1(a, 1, y) cross and a secondary one at a+. It should be clear

that in the absence of uncertainty the number of kinks increases going backward. Note

that this is a feature of the true model solution and constitutes a significant challenge for

the numerical solution of DC problems. As is well known, the presence of uncertainty, for

example in the form of stochastic income shocks (Gomes, Greenwood and Rebelo, 2001),

introduces convexity and can smooth kinks. Fella and Gallipoli (2014) use EGM to solve

a life-cycle model with an AR(1) labour income process and a discrete crime choice in each

working year. In each period, the number of secondary (back-propagating) kinks never

exceeds four despite a realistic working life of 40 years. Iskhakov et al. (2017) propose

adding addittive IID Extreme Value24 taste shocks to improve the reliability of the EGM

algorithm in DC problems where the inbuilt uncertainty provides insufficient smoothing.

They show that the variance of such shocks can be chosen so that the perturbed model

approximates the original model with an arbitrary degree of precision.25

Fella (2014) and Iskhakov et al. (2017) show that, with the same number of grid points,

DC-EGM is one to two orders of magnitudes faster and three orders of magnitude more

accurate than value function iteration, the most commonly used algorithm to solve DC

problems. Figure 4, adapted from Fella (2014), compares the performance of DC-EGM

(top row) vs VFI26 (bottom row) in solving a DC problem similar to the one discussed in
24The advantage of Extreme Value shocks is that they imply that the expecation of the value function

with respect to the shocks is available in closed fomr.
25For example one can choose the variance of taste shocks so as to smooth secondary, but not primary,

kinks.
26To make the comparison as fair as possible, the version of VFI employed is more accurate than the

discretized one typically used (e.g. Rust, 1987) in solving DC problems. It uses grid-search to bracket
the maximum over the discrete grid and then switches to linear interpolation of the saving function on
the bracketing interval.
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this section, with the only difference that the durable choice can take seven values and is

not irreversible and non-capital income is the sum of an AR(1) and white noise processes.

Frome left to right, each column corresponds to a different grid size—200, 400 and 1000

points—for the continuous state variable. The figure reports execution time, average and

maximum Euler error and plots the size distribution and the average of the Euler errors

(red line) over a 50,000 observations simulated history.

In terms of accuracy, not only EGM produces an average Euler error two to three

orders of magnitude smaller than VFI, for the same grid size. The average approximation

error of EGM with 200 grid points is nearly two order of magnitude smaller than VFI

with 1000 grid points, against a difference in computational time of about 40 times. In

fact, less than 0.1 per cent (less than 40 out of more than 40,000 observations off corners)

of the Euler errors of EGM with 200 grid points lie to the right of the average Euler error

of VFI with 1000 points.27 The dramatic difference in accuracy between DC-EGM and

VFI, compared to the much smaller difference in Table 1 in Section 2.1, is due to the fact

that in Section 2.1 both solution methods, EGM and time iteration, solve for the zeros

of the Euler equation. Instead VFI is less accurate since it maximises the right hand side

of the Bellman operator without using the Euler equation. As we have discussed above,

though, the computational costs of solving the Euler equations for a′ using EXGM are

too large for it to be a viable alternative in DC problems.28

DC-EGM can also be extended to models with risky borrowing and endogenous de-

fault. Contrary to incomplete market model with only risk-free debt, though, models

with risky borrowing imply that the borrowing limit is a state-dependent, equilibrium

object. Jang and Lee (2024) show how the DC-EGM algorithm can be adapted to deal
27Comparing the error distributions suggests that the maximum Euler error is not very informative

about the right tail of the error size distribution. This can be understood in light of the fact that in
DC problems the true saving function is discontinuous. Independently from the solution algorithm used,
as long as the simulation involves interpolating between two points bracketing a discontinuity in the
true policy function (e.g. point 4 and 8 in panel (c) in Figure 3) the Euler equation evaluated at the
approximate solution may be significantly violated.

28Note that both DC-EGM and VFI use the distance between subsequent iterates of the value function
as their convergence metric. The difference is just in the way the two approaches solve the inner loop
for the optimal saving function.
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Figure 4: Accuracy and speed of DC-EGM vs VFI. Source Fella (2014).
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Both algorithms were written in Fortran 95 and exectued on a single core of a Xeon X5570
processor.

with this complication. They exploit the theoretical result in Arellano (2008) that the

zero- profit condition for credit intermediaries implies a mapping from the quantity of

debt to the value (price times quantity) of debt that follows an inverted Laffer curve.

In equilibrium, a borrower would never choose to borrow more that the minimum of the

Laffer curve because there is an alternative contract that increases consumption today by

the same amount while entailing a smaller liability next period. Therefore the borrowing

limit in each income state coincides with minimum of the Laffer curve in that state. At

each iteration, the algorithm computes the zero profit condition given the current guess

for the default policy function and locates its minimum. Fella’s (2014) DC-EGM is then

used to solve for the saving function.

Although this section has confined attention to DC problems with a single continuous

state variables, Druedahl and Jørgensen (2017) discuss how a combination of DC-EGM
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with their triangulation procedure can accommodate non-concave and non-differentiable

problems with multiple continuous state variables. They provide necessary and sufficient

conditions on the model primitives that characterise the class of models to which their

algorithm is applicable.

5 Conclusion

The endogenous gridpoint method has proven an important alternative to conventional

numerical techniques in solving dynamic optimization problems. It leverages the insight

that the Euler equation is a known, and often linear function, of the pre-decision con-

tinuous state. Therefore, fixing the value of post-decision states and solving the Euler

equation for the value of pre-decision states significantly reduces interpolation errors and

computational costs.

The wide variety of EGM implementations documented in the literature—and sur-

veyed here—demonstrates the method’s flexibility and robustness across a large class of

models. As this survey illustrates, extending the basic EGM framework to richer envi-

ronments is both possible and advantageous, though not without challenges. As is often

the case, the main trade-off is between computing and user programming time. Using

EGM in the context of models with multiple state variables requires users to grapple with

technical issues, such as interpolation on non-rectangular grids or eliminating dominated

local but not global maxima, which typically require substantial investment in adapting

available codes to the particular problem at hand. Exogenous grid methods, such as

value function iteration, are much more off-the-shelf. The computational and accuracy

advantages of EGM, though, are particularly large for problems with both continuous

and discrete state variables. Unlike EGM, exogenous grid methods that rely on the Euler

equation are computationally too costly for this class of problems, leaving VFI as the

only, slower and less accurate, alternative. In these instances, resorting to EGM is often

the efficient choice particularly when the model solution is part of a structural estimation
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and, a fortiori, when the programming language used is a non-compiled one.

In sum, the endogenous gridpoint method stands as a key breakthrough for efficiently

solving dynamic optimization problems. Its core advantage—efficiently solving the Euler

equation minimizing the reliance on costly root-finding during each iteration—has helped

researchers tackle increasingly realistic and high-dimensional models. I hope this survey

serves not only as a reasonably-accessible introduction for newcomers but also as an

invitation for experienced modelers to consider its use when desirable.
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